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Abstract  

 

The salmon industry faces challenges related to sea lice infestations, escapees, diseases 

and environmental impact. Semi closed containment systems (S-CCS) have been proposed to 

abate these challenges. In the S-CCS, cultured fish are separated from the natural environment 

by a physical barrier. The use of these systems reduces the time fish spend living in open sea 

cages.  

This study investigated and documented welfare and growth performance of Atlantic 

salmon through an acute challenge test experiment and a big-scale benchmark study.  

The acute challenge test experiment was conducted using post-smolts raised in two large 

scale semi-closed system (S-CCS: Preline and Neptune), with reference groups raised in open 

sea cages. The post-smolt was stressed by confining them in a holding tank with reduced water 

level for a short period. Corresponding baseline sampling was done on unstressed fish for 

comparable measurements.    

For the benchmark study, selected production data from six generations of salmon was 

used to compare growth and performance of fish raised in S-CCS (Preline) and in open sea 

cages (reference). The benchmark study was carried out in two phases. Phase one used post-

smolts from approximately 100 g to 800 g in seawater, and fish in S-CCS were compared with 

a reference group from an open sea cage. The second, grow-out phase used salmon from 

approximately 800 g to 5000 g in open sea cages; here fish previously reared in S-CCS were 

compared with fish from a reference group.  

Fish raised in the S-CCS showed lower concentration of plasma cortisol, magnesium 

and lactic acid at baseline levels, giving a stronger response to the acute stress challenge than 

fish from the reference group. The results suggest lower basal stress in the S-CCS group 

compared with the reference group in open sea cages, as well as a more balanced response to 

stress in the S-CCS fish. 

The findings from the benchmark analyses showed a significantly lower infestation of 

sea lice in Preline fish during the post-smolt phase. Furthermore, in the grow-out phase the 

Preline group showed higher weight gain and higher final weight compared to the reference 

group in open pen (Weight at harvest: Spring transfer, Preline=4.65 kg vs reference group=3.79 

kg, Fall transfer, Preline=4.87 kg vs reference group=4.03 kg). Finally, salmon raised in Preline 

showed significantly higher survival compared to the reference group, indicating increased 

robustness in fish raised in S-CCS when transferred to open net pens in sea. 

As the results indicate reduced stress, lower sea lice infestations and greater weight gain, 

S-CCS appears to have advantages compared to traditional long exposure to the natural 

environment in open sea cages in Norway. However, to determine the real potential of S-CCS 

strategy, further research is needed.  
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Introduction 

Atlantic Salmon (Salmo salar) – Life Cycle  

In nature, the Atlantic salmon spawn and hatch in freshwater, where the juvenile stages 

are spent before undergoing a pre-adaptive preparatory transformation to a life in seawater 

(Figure I.1). This transformation is referred to as parr-smolt transformation or smoltification 

and is stimulated by external environmental cues like water temperature and photoperiod 

(Björnsson et al., 2011; Hoar, 1988; McCormick, 2013; Stefansson et al., 2008). The effect of 

photoperiod is translated via the light–brain–pituitary axis, involving several downstream 

endocrine factors such as cortisol, thyroid hormones, and growth hormone (Ebbesson et al., 

2003). The effect of temperature is more direct, acting as a rate-controlling factor on the 

physiological responses to the seasonal changes in photoperiod (Hoar, 1988; Stefansson et al., 

2008). 

Parr-smolt transformation includes changes in morphology, physiology, and behavior 

(Heggberget et al., 1993; Stefansson et al., 2016), including development of dark fin margins 

and silvery scales (McCormick, 1993; Stefansson et al., 2003). The physiological preparation 

for life in a hyperosmotic environment (seawater) results in the development of increased 

drinking rate and absorption of water through the intestine. The expression of genes that 

regulates the development of seawater chloride cells (Na+/K+-ATPase) in gill tissue increases, 

allowing for an active excretion of monovalent ions (D’Cotta et al., 2000; Tipsmark et al., 

2010). In nature, smoltification is accompanied by downstream migratory behavior. In the 

ocean, the post-smolt grow for two to three years before they become adult Atlantic salmon. 

The adult salmon usually return to their river of origin to reproduce (McCormick, 2013). The 

life cycle of the Atlantic salmon has led to the successful development of the Norwegian 

aquaculture industry.  
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Figure I.1. Schematic overview of the wild Atlantic salmon life cycle, from eggs to adult in 

freshwater and seawater.  
 

Aquaculture in Norway; challenges and potential  

With a coastline of more than 102,936 km, including fjords and islands (Norwegian 

Mapping Authority, 2020), Norway is one of the leading nations regarding production through 

marine fisheries and aquaculture farming (FAO, 2013). Intensive cultivation of Atlantic salmon 

(Salmo salar) accounts for the majority of farmed volumes. In 2018, nearly 1.36 million tons 

of farmed fish were produced, with the production of Atlantic salmon accounting for 95% of 

the total aquaculture volume, making Norway the largest producer of Atlantic salmon in the 

world (Statistics Norway, 2019). However, the political ambition is to achieve a five-fold 

increase in aquaculture production by 2050, which means production of 5 million tons, 

presuming sustainable environmental growth (Olafsen et al., 2012).  

The commercial launch of aquaculture equipment and farming of Atlantic salmon was 

introduced in the 1970s when the Grøntvedt brothers developed the octagonal floating sea cage 

(Berge, 2014). Today, nearly five decades later, the conventional open net cage has proven to 

Photo: Jayme van Dalum           
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both be cost-effective and enable efficient utilization of the coastal sea area. In 2019, Norway 

had 862 active locations (Directorate of Fisheries, 2019) for production of salmonids (Figure 

I.2a) and the conditions along the coast facilitate increased production volume from 

aquaculture. 

The salmon farming industry has failed to achieve such an increase in production. In 

fact, the produced volume has stagnated at around the 2012 level (approximately 1.2 million 

tons, Statistics Norway, 2019, Figure I.2b). This lack of increase is a consequence of challenges 

concerning pathogens and diseases (Rosten et al., 2011). In addition, escaped farmed Atlantic 

salmon pose a significant environmental challenge that has a negative impact on wild salmon 

(Glover et al., 2012). These challenges have created a temporary bottleneck for the expansion 

of salmon farming and require new sustainable production systems. 

 The sea lice (L. salmonis) are one of the major pathogens affecting the commercial 

culture of salmonids, both in Norway and the rest of the world (MacKinnon, 1998; Mustafa et 

al., 2000). The sea lice feed on mucus, skin, and blood of the host, and the impact on lice-

infested fish varies from mild skin damage to more severe damage to individual fish (Bowers 

et al., 2000; Dawson et al., 1999). Other factors, such as growth rate, reduced appetite, and 

feed-conversion efficiency are also negatively affected (Dawson et al., 1999; Pike & 

Wadsworth, 1999). Consequently, salmon farmers are inflicted with vast costs in relation to 

preventive efforts and sea lice treatment. In addition, wild salmon populations are negatively 

affected by increasing incidences of sea lice (Anon, 2011; Costello, 2009a, 2009b) 

To address this challenge, regulating authorities have recently implemented a system 

using traffic lights (green, yellow, and red) to control the increase in production of Atlantic 

salmon. (MTIF, 2017a). The Production Area Regulation divides the Norwegian coast into 13 

production areas. In each area, the traffic light system controls the potential for growth or a 

reduction in potential production, based on the mortality risk from sea lice infestation for wild 
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salmon. The traffic light indicates three different levels, where green denotes low risk, yellow 

represents moderate risk, and red indicates high risk of sea-lice induced mortality (MTIF, 

2017b). Hence, the traffic light system includes a forced reduction in production volume in 

locations with high sea lice pressure (Myksvoll et al., 2018; Vollset et al., 2017), and the aim is 

to protect wild salmon populations and improve salmon welfare (MTIF, 2015).  

 

 

 

To cope with the current challenges, the aquaculture industry demands new production 

regimes for farming of Atlantic salmon. A key factor in abating the current challenges of open 

sea cage farming is simply to reduce the open sea period for the fish. This reduction will reduce 

the exposure period to sea lice, diseases and possible upgrade the Atlantic salmon production 

cycle. In addition, findings have shown that larger smolts are more robust and capable of 

handling the transfer to open net-pens in seawater (Ytrestøyl et al., 2015).  

 

 

 

Figure I.2. Atlantic Salmon (Salmo salar) aquaculture production in Norway. Active aquaculture 

locations according to the Directorate of Fisheries, 2019 (A). Production and first-hand value of 

Atlantic salmon in the period 2000–2018. Source: Statistics Norway, 2019 (B). 
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Production of Atlantic Salmon; introduction of new technologies   

In Norwegian aquaculture, the Atlantic salmon is hatched and raised in freshwater at 

land-based facilities. To stimulate growth and parr-smolt transformation in juvenile salmon, 

industrial manipulation of environmental parameters, such as photoperiod and temperature, is 

commonly used. In addition to accelerated growth, it has been reported that hatchery fish reared 

under intensive conditions develop faster and show typical smolt characteristics such as 

increased silvering, seawater tolerance, and increased gill NKA activity several months prior to 

the normal smolt season (Handeland & Stefansson, 2001). However, for the farmers, it is of 

great importance to conduct the transfer to seawater during a specific period called the ‘smolt 

window’. If the transferred smolts fail to reach seawater during this critical ‘smolt window,’ 

the fish undergo desmoltification, a process which includes a loss of hypo-osmoregulatory 

abilities and metabolic adaptions (Stefansson et al., 2008). After achieving smolt-status, the fish 

is transferred to sea cages, where the predominant production of Atlantic salmon takes place 

(Oppedal et al., 2011). The Atlantic salmon is now referred to as post-smolt until it reaches a 

weight of 1 kg (Hjeltnes et al., 2017).  

The post-smolt phase in open seawater is considered to be the most critical, due to 

physiological and environmental challenges such as sea lice, diseases and suboptimal water 

conditions. Consequently, up to 20% of the smolt transferred to sea cages can be lost before 

reaching harvest size (Bleie & Skrudland, 2014; Hjeltnes et al., 2017). These biological and 

environmental challenges have been suggested as being harmful to prospective growth of the 

industry (Gullestad et al., 2011). To mitigate this situation, it has been suggested that farmers 

should produce larger and more robust post-smolt as a preventive strategy to reduce production-

related losses in open sea cages. 

Hence, innovative technologies are emerging in the aquaculture industry, making it 

possible to move part of the post-smolt phase to land-based, closed, recirculating aquaculture 
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systems (RAS) or by using floating semi-closed containment systems (S-CCS) in the sea 

(Rosten et al., 2011; Thorarensen & Farrell, 2011). Examples of floating semi closed systems 

in sea are the Preline raceway platform (Preline Fishfarming system and Lerøy AS) and the 

Neptune tank (AquaFarm Equipment AS and Mowi AS). Introduction of these systems could 

prospectively have an impact on limiting the environmental challenges, which include sea lice 

infestations, outbreak of diseases, escapes, organic waste, and delousing agent pollution. 

This study investigates the use of floating S-CCS (Preline and Neptune) in commercial 

post-smolt production. The research combines two different approaches: (1) Acute challenge 

test (ACT), as described in the “Stress response and allostasis” paragraph; and (2) the 

benchmark analysis, further described in the “Biological performance in S-CCS” paragraph.  

The first approach measures the biological response in fish exposed to an acute stressor, and 

the second one analyzes and benchmark the performance of fish reared in an S-CCS prior to 

grow-out in open sea cages.  
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Stress Response and Allostasis in fish 

Stress can be defined as the summary of the physiological responses the fish use to 

maintain or restore normal metabolism after an environmental challenge (Iwama, 1997). 

Interruptions of the internal equilibrium (homeostasis) generated by internal or external stimuli 

are defined as a stressor (Selye, 1950; Wendelaar Bonga, 1997). According to the duration and 

magnitude of exposure to stressors, a stress response can be divided into primary, secondary, 

and tertiary responses (Figure I.3). In aquaculture, stress is related to conditions that negatively 

affect the fish immune system response capacity, resistance against infections, growth, and 

reproduction (Wendelaar Bonga, 1997). 

When exposed to a primary response, stressors activate the hypothalamus–pituitary–

interrenal (HPI) axis. Perception of a stressor by a fish initiates a rapid, neural stimulated release 

of stress hormones (catecholamines and cortisol) into the circulatory system. Catecholamines 

(specifically adrenaline and noradrenaline) are released from the chromaffin tissue situated in 

the head kidney of teleosts, and from the endings of adrenergic nerves (Randall & Ferry, 1992). 

Cortisol is released from the interrenal tissue, which is located in the head kidney, in response 

to pituitary hormones. In this process the adrenocorticotropic hormone (ACTH) is essential 

(Iwama, 2006; Wendelaar Bonga, 2011).  

The secondary stress response has a mobilizing effect on the fish. If exposed to a 

challenge, the fish will increase the production of catecholamines and cortisol from the head 

kidney. This has a strong effect on metabolism toward increasing the availability of glucose. 

Consequently, less acute functions in the fish body, including digestion, reproduction, and 

growth, are not prioritized. The secondary response will also increase the heart rate and blood 

circulation to muscles nourished by glucose.  

Repeated or long-term exposure to a stressor could lead to a tertiary stress response, 

resulting in a chronic stress state for the fish. In this state, the fish are not able to maintain or 
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retain homeostasis, reducing the ability for reproduction, growth, and survival (Schreck, 2010; 

Wendelaar Bonga, 1997). In aquaculture, farming salmon exposes the fish to challenging 

situations that could potentially lead to stressors. Such stressors could be suboptimal water 

conditions, diseases, transport, vaccination, and malnutrition (Chrousos, 1998; Madaro et al., 

2015). In an S-CCS system, it is suggested that the magnitude of some of these stressors could 

be reduced within the system, in contrast to open sea cages (Rosten et al., 2011). 
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Corticosteroids Cortisol Catecholamines Adrenalin / 

Noradrenaline 

Changes in whole animal:  

• Reduced growth and reproduction 

• Disease susceptibility 

• Immune suppression  
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Figure I.3. Schematic representation of stress response in the teleost, including endocrine, 

metabolic and osmotic responses. An adaptive response will try to maintain homeostasis 

and increase individual survival. (Figure based on Wendelaar Bonga, 1997; Tort, 2011). 
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 In fish stress physiology, the concept of welfare has gradually been more commonly 

presented in terms of allostasis, introducing a more dynamic and flexible view of the internal 

balance (McEwen, 1998; Sapolsky, 2004). This process suggests an inverted U-shaped 

relationship where both too little or too much stress leads to poor welfare (Korte et al., 2007; 

Sterling & Eyer, 1988). It is important to emphasize that stress in itself is not negative, and that 

the stress response is part of the normal physiology. Moreover, allostasis is the bodily process 

of attempting to achieve stability, i.e., homeostasis, by varying physiological and behavior 

operations (McEwen & Wingfield, 2003). When exposed to persistent and intense stressors, the 

organism goes into an allostatic state (McEwen & Wingfield, 2003).  

The physiological cost of maintaining the allostasis is referred to as an allostatic load 

(Ramsay & Woods, 2014). An increase in allostatic load would demand more energy to 

maintain homeostasis (McEwen & Wingfield, 2003). Allostatic overload is reached if the 

energy demand for maintaining allostasis is greater or equal to the available energy, 

consequently forcing the organism to allocate energy from other biological functions, such as 

the immune system, reproduction, and growth (McEwen, 2002). In this state of allostatic 

overload, the fish will have a limited amount of energy to handle additional stressors (Korte et 

al., 2007). The allostatic overload is here likely to reach a chronic stress response, and in terms 

of welfare, this stage would also lead to an increased risk for pathologies and systemic failures 

(Korte et al., 2007; Ramsay & Woods, 2014). 

It has been suggested that fish reared in open sea cages and exposed to suboptimal water 

quality might have a reduced capacity to handle an acute stressor (Rosten et al., 2011). Hence, 

in terms of the stress response in fish, the study in Chapter 1- “Acute challenge test in S-CCS” 

compares two semi closed containment systems (S-CCS: Preline and Neptune) implemented 

in the post-smolt phase of producing Atlantic salmon. The study in chapter 1 investigate the 

biological performance after assessing the fish with an acute stress test. The experiments aim 

https://www.frontiersin.org/articles/10.3389/fnbeh.2019.00047/full#B33
https://www.frontiersin.org/articles/10.3389/fnbeh.2019.00047/full#B33


 

 

17 
 

to address whether there is a different response to a stressor in the fish reared in S-CCS 

compared to fish in open net-pens during the post-smolt phase.  

Benchmark of biological performance; S-CCS versus open sea cages 

A variety of technologies have been deployed to handle the current challenges 

associated with the open sea cage culture of salmonids, such as farming fish in floating closed 

containment systems. A semi-closed aquaculture system (S-CCS) is defined as a fish-producing 

system that has an impenetrable, or close to an impenetrable barrier, between the fish and the 

surrounding environment (Iversen et al., 2013). Presently, floating concepts of S-CSS in the 

aquaculture industry differ in shape, size and volume. The construction material differs between 

more-rigid materials, such as concrete, steel, polyethene (PE) and fiberglass, to less-rigid 

materials, such as enclosed plastic bags (Iversen et al., 2013; Teknologirådet, 2013). In an S-

CCS, it is expected that there will be more stable water quality and precise monitoring of the 

system, contrasting with the situation of an open sea cage, which is fully exposed to 

environmental fluctuations induced by changes in current regime, water stratification, weather 

conditions, and seasonal differences (Remen et al., 2013; Remen et al., 2016).  

In an S-CCS system the water can be pumped from intermediate water layers to avoid 

areas in which sea lice are the most abundant (Rosten et al., 2011). In Norway, the temperature 

in the sea is dependent on depth and stratification (Figure I.4). The S-CCS generate water flow 

through an inlet at a depth of 20-30 m beneath the surface, while the open pen is exposed 

completely to the water stratification. Consequently, the temperature profile will differ between 

an S-CCS system and an open sea cage system during the season. The temperature in seawater 

(surface) during summer is higher in an open net-pen compared to S-CCS and is the opposite 

during winter, i.e., higher in the S-CCS system compared to open pen. This shows that S-CCS 

with inlet water at 30 m generates an “opposite season” temperature parameter compared to 



 

 

18 
 

open sea cages. These variations in the temperature will then affect growth and feed conversion 

in fish during seasons (Talbot, 1993).  

 

Figure I.4. Seasonal temperature profile of seawater in western Norway. Data are collected from 

Institute of Marine Research (IMR). 

 

By utilizing water from low layers, it allows for more stable conditions (temperature 

and salinity) that might have a positive effect on the welfare and growth of the fish (Rosten et 

al., 2011). The S-CCS system may also reduce central environmental challenges, such as 

organic waste emissions, spreading of sea lice, and farmed escapees (Rosten et al., 2011). 

Recent studies have shown a low mortality rate for post-smolt reared in closed 

containment systems with optimal density (Calabrese et al., 2017; Ytrestøyl et al., 2015). 

Further investigation of the biological performance in terms of growth, feed conversion, 

mortality and robustness of Atlantic post-smolt reared in S-CCS is required to assess the 

application of this technology.  

Such an assessment is presented in Chapter 2; Benchmark analysis, where the aim of 

the study is to investigate and benchmark biological performance in fish reared in the Preline 
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system (S-CCS), and fish reared in a traditional open cage system. To achieve a broader 

understanding of the systems’ performance independent of seasonal variations, the study was 

conducted from May 2015 to January 2019. The benchmark analysis was performed through 

two phases; post-smolt and grow-out phase, where both production stages are compared to fish 

reared in open net-pens and was followed until harvest for each generation.   
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Chapter 1 – Acute Challenge Test in S-CCS 

Objectives 

This study aims to compare biological performance in fish reared in two S-CCS 

(Neptune and Preline) and compare them to fish reared in traditional open cage system after an 

acute challenge test (ACT).  

The experiment was based on the following hypotheses:  

H01: Post-smolt rearing methods (S-CCS or open reference cage) have no significant 

effect on plasmatic cortisol concentration after an acute challenge test (ACT). 

H11: Post-smolt rearing methods (S-CCS or open reference cage) have a significant 

effect on plasmatic cortisol concentration after an acute challenge test (ACT). 

H02: Post-smolt rearing methods (S-CCS or open reference cage) have no significant 

effect on plasmatic chloride concentration after an acute challenge test (ACT). 

H12: Post-smolt rearing methods (S-CCS or open reference cage) have a significant 

effect on plasmatic chloride concentration after an acute challenge test (ACT). 

H03: Post-smolt rearing methods (S-CCS or open reference cage) have no significant 

effect on plasmatic sodium concentration after an acute challenge test (ACT). 

H13: Post-smolt rearing methods (S-CCS or open reference cage) have a significant 

effect on plasmatic sodium concentration after an acute challenge test (ACT). 

H04: Post-smolt rearing methods (S-CCS or open reference cage) have no significant 

effect on plasmatic calcium concentration after an acute challenge test (ACT). 

H14: Post-smolt rearing methods (S-CCS or open reference cage) have a significant 

effect on plasmatic calcium concentration after an acute challenge test (ACT). 

H05: Post-smolt rearing methods (S-CCS or open reference cage) have no significant 

effect on plasmatic magnesium concentration after an acute challenge test (ACT). 
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H15: Post-smolt rearing methods (S-CCS or open reference cage) have a significant 

effect on plasmatic magnesium concentration after an acute challenge test (ACT). 

H06: Post-smolt rearing methods (S-CCS or open reference cage) have no significant 

effect on plasmatic glucose concentration after an acute challenge test (ACT). 

H16: Post-smolt rearing methods (S-CCS or open reference cage) have a significant 

effect on plasmatic glucose concentration after an acute challenge test (ACT). 

H07: Post-smolt rearing methods (S-CCS or open reference cage) have no significant 

effect on plasmatic lactic acid concentration after an acute challenge test (ACT). 

H17: Post-smolt rearing methods (S-CCS or open reference cage) have a significant 

effect on plasmatic lactic acid concentration after an acute challenge test (ACT). 
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Materials and Method 

Fish Material and Rearing Conditions  

The fish (n = 240) used in (Experiment 1 – Preline and Experiment 2 – Neptune) 

originated from Lerøy Vest AS and Mowi AS. Fish in the Preline experiment (n = 120) 

originated from the Salmobreed strain that had been reared at Sjøtroll Havbruk AS (Kjærelva, 

Fitjarstern Norway) from hatching to the smolt stage. Fish in the Neptune experiment (n = 120) 

were of the Mowistrain, reared at Vågafossen Settefisk AS (Imsland, Vindafjord Norway) from 

hatching to smolt stage.  

All fish used in the experiments were part of the respective commercial production lines 

and followed a standard production protocol, according to Lerøy Vest AS and Mowi AS. 

Experimental Facilities  

 The acute challenge test (ACT) conducted in this study includes two experiments, 

experiment (1); Preline and reference, and experiment (2); Neptune and reference.   

Experiment 1- Acute challenge test: Preline 

Experiment 1 was conducted at the Lerøy Vest AS facilities at Sagen (60° 20.903 N' 5° 

38.640 E') in the Trengereidfjord, Samnanger in Hordaland (Preline) with Bognøy facility in 

the Radfjord (60° 36.235 N' 5° 04.633 E'), Radøy in Nordhordaland as Preline reference. The 

S-CCS Preline included a 50 m-long raceway (PE) platform and has an elliptical cross-section 

(Figure 1.1). The Preline platform has a rearing volume of 2,000 m3 with a max water flow of 

400 m3/min. The inlet water was pumped from a depth of 30 m (total depth 100 m). At each 

end of the system, propellers create a continuous water flow through the raceway and the water 

exchange rate was approximately 4–5 min (current 12–15 cm/s, Vector 3D acoustic 

Velocimeter, Nortek AS, Norway). Oxygen concentrations, temperature, and feeding were 

controlled by automatic systems and all data were registered daily (OxyGuard, Sterner). Daily 

water measurements were taken in the inlet and outlet drain, and commercial dry diets (Ewos 
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raid air) were fed from automatic feeders. The pellet was designed to have a longer retention 

time. All husbandry practices, including lice count, were conducted following the standard 

protocol for salmon rearing for Lerøy Vest AS. 

  

Figure 1.1. The Preline system placed at the Sagen location (A) and a 3D model (B) of the 

platform. Photo: (A) Lerøy Vest AS, (B) Preline Fishfarming System AS.  

 

The reference group were reared in an open 160 m conical circular (Spissnot in 

Norwegian) sea cage (Bognøy, Radfjorden). Fish from the reference group followed the same 

feeding regime as in the Preline group and were fed with standard commercial pellets (EWOS) 

throughout the whole experimental period. Employees conducted daily measurements of water 

parameters (temperature and oxygen saturation) in both groups.  

 

 

 

 

 

 

A 

B 
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Experiment 2 – Acute challenge test: Neptune  

Experiment 2 was conducted at the Mowi AS facilities Molnes (59° 43.195 N' 5° 51.475 

E') in Skånevik, Hordaland (Neptune) and Munkholmen (59° 17.130 N' 5° 37.882 E'), situated 

in Hervikfjorden in Tysvær, Rogaland, as Neptune reference. The Neptune facility (Figure 1.2), 

is formed as a circular fiberglass tank with a circumference of 126 m made of glass-fiber 

reinforced plastic (GRP). The sidewalls are coated with Norpol gel and topcoat (Reichold, 

Durham, NC, USA). The bottoms are coated with a Büfa standard gel and topcoat (Büfa, 

Rastede, Germany). The intake depth is fixed at 25 meters and the system has a rearing volume 

of 21,000 m3. Dry diets (MH Transfer STG, made by Mowi) were fed from automatic feeders 

throughout the Neptune period.  

 

 

Figure 1.2. Experimental facility for Neptune (A), Molnes (Mowi ASA/ Design by AquaFarm 

Equipment) and (B) a 3D model of the Neptune system. Photo: (A) Mowi AS and (B) 

AquaFarm Equipment AS. 
 

The reference group fish (Munkholmen, Hervikfjorden) were stocked in a traditional 

open sea cage. Fish from the reference group followed the same feeding regime as the Neptune 

A B 
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group throughout the whole experimental period. Daily husbandry was conducted by 

employees at Mowi AS in both groups.  

Figure 1.3. Overview of the facilities used in experiments 1 and 2. The S-CCS facilities; Sagen 

(Preline) and Molnes (Neptune), are plotted with the green marker. The reference group; 

Bognøy (experiment 1) and Munkholmen (experiment 2) are plotted with a blue marker. Black 

dots represent other open pen farms in the area.  
 

Experimental Design; Experiment 1 and 2 

Fish from Lerøy Vest AS, Kjærelva was divided into Preline (S-CCS group) and 

Bognøy (reference) and fish from Mowi AS, Vågafossen, was divided into Neptune (S-CCS 

group) and Munkholmen (reference), respectively. A total of 120 fish were part of each 

experiment and included subsets of fish (n = 30) that were selected from four different groups 

(Table 1.1 and Table 1.2). All the locations for the different groups are indicated in Figure 1.3  

Sampling of the groups consisted of two treatments; first baseline sampling, second the 

acute challenge test (ACT). A schematic representation of the experimental protocol used at 

Preline, Bognøy, Neptune and Munkholmen is depicted in Figure 1.4 
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Table 1.1 Overview of treatments group in experiment 1 – Preline System 

Date Location Fish group Treatment        Fish N 

01.03.18 Sagen Preline ACT Acute challenge test (ACT) 30 

01.03.18 Sagen Preline Baseline Baseline 30 

12.03.18 Bognøy Preline Ref ACT Acute challenge test (ACT) 30 

12.03.18 Bognøy Preline Ref Baseline Baseline 30 

 

Table 1.2 Overview of treatments group in experiment 2 – Neptune System  

Date Location  Fish group  Treatment Fish N 

05.04.18 Molnes Neptune ACT  Acute challenge test (ACT) 30 

05.04.18 Molnes Neptune Baseline Baseline 30 

06.04.18 Munkholmen Neptune Ref ACT Acute challenge test (ACT) 30 

06.04.18 Munkholmen Neptune Ref Baseline Baseline 30 

 

Experimental Procedure  

Baseline sampling; Baseline samplings were conducted on site in order to perform 

comparable measurements of the treatments in the experiments. Fish was collected by using a 

special net (orkast in Norwegian) which was lowered down in the systems (open net pens and 

S-CCS). Thereafter, feed was thrown over the net to attract fish and was then quickly raised to 

collect the fish. The baseline sampling was conducted directly after collection of the fish (Table 

1.1 and 1.2).  

Acute challenge test (ACT); To determine the stress response in fish, an acute challenge 

test (ACT) was performed after the baseline sampling (Figure 1.5). The ACT was performed 

by netting the fish per group (n = 30) and then confining them in a 200 L holding tank (supplied 

with water from the original system). The water level was then reduced with 80% in the tank 

for 15 min. Fresh water from the system was constantly supplied during the stress test at the 



 

 

27 
 

20% water level. After 15 min, the water level was increased to normal level and allowed the 

fish a 45 min recovery period before sampling (Table 1.1 and 1.2).  

Figure 1.4. Schematic setup of the experimental protocol, post-smolt reared in S-CCS (Preline 

and Neptune) and reference group in open net-pens. The S-CCS figure is schematized by the 

Preline system, but the same setup was conducted for the Neptune system. The post-smolt group 

was reared in S-CCS for approximately 3–4 months prior sampling. 

 

 

 

Figure 1.5. Equipment used for the ACT treatment. The confinement tank where the post-smolt 

were reared during the ACT (15 min) and the 45 min recovery period.  

20 % 

100 % 
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Sampling Protocol  

Randomly chosen fish were rapidly netted and humanely euthanized with a lethal dose 

(200 mg/L) of Benzocaine. To avoid coagulation, heparinized 23G needle 2 mL syringes were 

used to collect fish blood from the caudal vein. Gathering of blood samples was prioritized, and 

all fish were sampled within 10 min of netting. Plasma was separated from the blood`s cellular 

fraction in Eppendorf tubes by centrifugation (3 min at 5,000 rpm) and frozen immediately after 

collection in dry ice, then transported to Høyteknologisenteret, Bergen and stored at -80oC until 

further analysis could take place. This sampling was conducted by Prof. Sigurd Handeland 

(UiB), Senior researcher Pablo Balseiro (Norce) and PhD student Patrik Tang (UiB).  

ELISA Cortisol Concentration 

The Cortisol ELISA (enzyme-linked immunosorbent assay) Kit (Demeditec, Kiel) is 

based on the principle of competitive binding.  

The samples were measured in triplicate, and every plate measured included standard 

and two control samples of a known concentration, in addition to the samples. The microtiter 

wells were coated with an anti-cortisol antibody. An unknown amount of cortisol present in the 

sample competes with a known concentration of cortisol horseradish peroxidase conjugate for 

binding to the well-coating antibody. After incubation, the unbound conjugate is washed off. 

The amount of bound peroxidase-conjugate is inversely proportional to the concentration of 

cortisol in the sample. The color developed by TMB (3.3'.5,5'-Tetramethylbenzidine) is 

measured at 450 nm in a Tecan Spark® multimode microplate reader and compared with known 

concentration standards. The intensity of color developed is compared with known standards 

using 4 Parameters Marquardt logistic regression with an extrapolation factor of 1 in the 

SparkControl Magellan v2.2.10 software.  
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Blood Chemistry 

The Pentra c400 with Ion-Selective Electrode (ISE) module clinical chemistry analyzer 

(HORIBA, Kyoto Prefecture, Japan) was used to measure sodium and chloride concentration 

in the plasma samples by potentiometry. The ISE module was calibrated using the ABX Pentra 

Standard 1, ABX Pentra Standard 2, and ABX Pentra Reference. The samples (>180 µl of 

plasma was subjected to blood chemistry analysis) were measured using specific electrodes in 

line with a special membrane and a solution with a known concentration of the ions. The 

analyzed ion creates a difference of potential across the electrode membrane that is compared 

to one of the reference electrodes (Buck, 1981). The rest of the analyses performed on the 

clinical chemistry analyzer were analyzed by colorimetric spectrophotometry determination 

(calcium, magnesium, glucose, lactic acid) and used the ABX Pentra Multical for calibration of 

the reagents, followed by a quality control using the ABX Pentra N and P controls as indicated 

in the manufacturer protocol.  

A method based on metallochromogen Arsenazo III using the ABX Pentra Calcium AS 

CP reagent (HORIBA) was used to measure calcium concentration. In the reaction, calcium 

ions (Ca2+) reacted with Arsenazo III (2.2’-[1.8-Dihydroxy-3.6-disulphonapthyylene-2.7-

bisarzo]-bisbenzenearsonic acid), forming an intense purple-colored chromophore at pH 6.75. 

The sample (5 µl), distilled water (10 µl), and the reagent (300 µl) were mixed, and absorbance 

of the Ca-arsenazo III complex was measured bichromatically at 660/700 nm (Michaylova & 

Ilkova, 1971). The calcium concentration was directly proportional to the increase in 

absorbance of the reaction mixture. The Arsenazo III has a high affinity for calcium ions (K d 

= 1 x 10 -7), and other cations normally present in the plasma did not show interference with 

the method, according to manufacturer protocol. 

 

Ca++ + Arsenazo III      pH 6.75     Ca-Arsenazo III complex (purple) 
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ABX Pentra Magnesium RTU reagent (HORIBA) was used for the quantitative in vitro 

diagnostic determination of magnesium. In an alkaline solution, magnesium ions form a purple-

colored complex with xylidyl blue. The reagent included GEDTA, which forms complexes with 

calcium ions and makes the reaction specific. The sample (2.5 µl), distilled water (10 µl), and 

the reagent (250 µl) were mixed for each analysis. The absorption of the complex was measured 

at 520/700 nm in a photometric test (Burcar et al., 1964). The magnesium concentration was 

proportional to the intensity of the purple color of the magnesium-xylidyl blue complex 

measured in the test, according to manufacturer protocol. 

ABX Pentra Glucose HK CP reagent (HORIBA) was used for the quantitative in vitro 

diagnostic determination of glucose. Glucose was determined using the hexoquinase method, 

which couples the production of the phosphorylated Glucose-6-phosphate with the posterior 

production of D-gluconate-6-phosphate and reduction of NAD+. The increase in NADH 

concentration is proportional to the glucose concentration and can be measured 

spectrophotometrically at 340/380 nm (Burrin & Price, 1985). 

 

Glucose + O2      
Glucose oxidase      Glucose acid + H2O2 

 

2H2O2 + Phenol + 4AAP    Peroxidase        Quinoneimine + 4H2O 

 

ABX Pentra Lactic Acid reagent (HORIBA) was used for the quantitative in vitro 

diagnostic determination of lactic acid. The release of hydrogen peroxide is triggered by lactate 

oxidase. Hydrogen peroxide then reacts with 4 – aminoantipyrine and ESPAS (N-ethyl-N-

sulfopropyl-m-anisidine) to a colored complex in the presence of peroxidase that is measured 

bichromatically at 550/700 nm. Lactate concentration present in the sample was proportional 

to the intensity of the coloring (Trinder, 1969).  
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Lactate + O2     
Lactate oxidase      Pyruvate + H2O2 

 

2H2O2 + 4AAP + ESPAS    Peroxidase        Quinoneimine + 4H2O 

 

(4 AAP = 4-aminoantipyrine, ESPAS = N-ethyl-N-sulfopropyl-m-anisidine) 

 

Statistical Analyses  

All statistical analyses and figures were generated using RStudio (Version 1.2.500, 

Rstudio, Inc, Boston, MA, USA) and R (Version 3.6.1, R core team, Vienna, Austria), including 

the following packages; Rcompanion (Mangiafico, 2018), car (Fox & Weisberg, 2011), dplyr 

(Wickham et al., 2018), ggplot2 (Wickham, 2016), tidyr (Wickham & Henry, 2019), gridExtra 

(Augie, 2017), plyr (Wickham, 2011), ggpubr (Kassambara, 2018), reshape 2 (Wickham, 

2007), and multcomp (Hothorn et al., 2008).    

Outliers, with values greater than 1.5 times the interquartile range, were excluded using 

the Tukey fences method in Excel (Microsoft, Redmond, Washington, USA), although the 

outliers are retained in the figures. The datasets were checked for normality and homogeneity 

of variance assumptions using the Shapiro-Wilk test and the Levene test, respectively. To 

determine the degree of significance of differences in blood chemistry parameter 

concentrations, a one-way ANOVA with a Tukey post-hoc test was conducted. If the 

requirements for normality or homogeneity of variances were not met, a data transformation 

was conducted using the Tukey Ladder of Powers transformation (Mangiafico, 2016). If the 

transformation still failed to satisfy the assumptions, a non-parametric Kruskal–Wallis test was 

conducted. The Tukey HSD and Mann–Whitney–Wilcoxon post-hoc comparison tests were 

used for the Kruskal–Wallis models. The degree of significance between the groups in this 

study was considered as significant when p-value < 0.05 and flagged with one star (*). If the p-

value is less than 0.01, it is flagged with two stars (**). If a p-value is less than 0.001, it is 
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flagged with three stars (***) and if a p-value is less than 0.0001, it is flagged with (****). All 

the statistical results in this study are reported in the Appendix II.  
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Results  

Plasmatic Cortisol Concentration  

 A significant increase in the cortisol level (Figure 1.6A) was observed for Preline ACT 

compared to Preline Baseline (p < 0.0001, Wilcoxon). Further, a significant increase was 

observed for the Preline ACT compared to Preline Ref ACT (p < 0.0001, Wilcoxon). No 

difference was observed between the Preline Ref ACT and Preline Ref Baseline. For the Preline 

Baseline and Preline Ref Baseline, a significant increase in cortisol level was observed in 

Preline Ref Baseline (p < 0.0001, Wilcoxon) 

A significant increase (Figure 1.6B) in cortisol level was observed in Neptune ACT 

compared to Neptune Baseline (p < 0.001, Wilcoxon). Further, between Neptune ACT and 

Neptune Ref ACT, a significantly increase was observed for Neptune ACT (p < 0.01, 

Wilcoxon). In addition, significant increase was observed for the Neptune Ref ACT compared 

to Neptune Ref Baseline (p < 0.01, Wilcoxon). Between Neptune Baseline and Neptune Ref 

Baseline, no difference was observed in the cortisol level. 

Figure 1.6. Plasma cortisol concentration in Preline (A) and Neptune (B) S-CCS, both in the 

baselines for each system and after the Acute Test Challenge (ACT). Comparative reference 

groups are also included. In the boxplot, the upper line represents the 75% quantile, middle line: 

median, 50% quantile, and lower line: 25% quantile. The black (square) dot represents the mean 

and the colored dots represent outliers. Significance levels are p<0.05 (*), p<0.01 (**) and 

p<0.001(***), p<0.0001(****), ns = no significance, as assessed by the Wilcoxon post-hoc 

test.  
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Plasmatic Chloride Concentration  

Between Preline ACT and Preline Baseline (Figure 1.7A), a significantly higher 

increase in the chloride concentration was observed for the Preline ACT (p < 0.001, Tukey). 

No difference in chloride level was observed between the Preline ACT and Preline Ref ACT. 

In addition, significant increase was observed in Preline Ref ACT compared to Preline Ref 

Baseline (p < 0.001, Tukey). In the Preline Ref Baseline, a significantly higher chloride level 

was observed compared to Preline Baseline (p < 0.05, Tukey).  

A significant increase in chloride level (Figure 1.7B) was observed in Neptune ACT 

compared Neptune Baseline (p < 0.001, Tukey). Further, between Neptune ACT and Neptune 

Ref ACT, no difference was observed in chloride level. A significant increase in chloride level 

was observed in Neptune Ref ACT compared to Neptune Ref Baseline (p < 0.01, Tukey). Also, 

for the Neptune Baseline and Neptune Ref Baseline, no difference was observed in chloride 

concentration. 

Figure 1.7. Plasma chloride concentration in Preline (A) and Neptune (B) S-CCS, both in the 

baselines for each system and after the Acute Test Challenge (ACT). Comparative reference 

groups are also included. In the boxplot, the upper line represents the 75% quantile, middle line: 

median, 50% quantile, and lower line: 25% quantile. The black (square) dot represents the mean 

and the colored dots represent outliers. Significance levels are p<0.05 (*), p<0.01 (**) and 

p<0.001(***), ns = no significance, as assessed by the Tukey’s post-hoc test.  
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Plasmatic Sodium Concentration  

Between Preline ACT and Preline Baseline (Figure 1.8A), a significantly higher 

increase in the sodium concentration was observed for Preline ACT (p < 0.0001, Wilcoxon). 

No difference was observed between Preline ACT and Preline Ref ACT. In addition, significant 

increase was observed in Preline Ref ACT compared to Preline Ref Baseline (p < 0.001, 

Wilcoxon). For the Preline Baseline and Preline Ref Baseline, a significant increase in sodium 

level was observed in Preline Ref Baseline (p < 0.001, Wilcoxon). 

A significant increase in sodium level (Figure 1.8B) was observed in the Neptune ACT 

compared to Neptune Baseline (p < 0.001, Tukey). Further, between Neptune ACT and Neptune 

Ref ACT, no difference was observed in sodium level. A significant increase in sodium level 

was observed in Neptune Ref ACT compared to Neptune Ref Baseline (p < 0.001, Tukey). For 

the Neptune Baseline and Neptune Ref Baseline, a significant increase was observed in Neptune 

Ref Baseline (p < 0.001, Tukey).  

Figure 1.8. Plasma sodium concentration in Preline (A) and Neptune (B) S-CCS, both in the baselines for 

each system and after the Acute Test Challenge (ACT). Comparative reference groups are also included. In 

the boxplot, the upper line represents the 75% quantile, middle line: medians, 50% quantile, and lower line: 

25% quantile. The black (square) dot represents the mean and the colored dots represent outliers. Significance 

levels are p<0.05 (*), p<0.01(**), p<0.001(***), p<0.0001(****), ns = no significance as assessed by the 

Wilcoxon post-hoc test for the Preline groups and Tukey’s post-hoc test for the Neptune groups.  
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Plasmatic Calcium Concentration  

Between Preline ACT and Preline Baseline (Figure 1.9A), a significant increase in the 

calcium concentration was observed for Preline ACT (p < 0.0001, Wilcoxon). No difference 

was observed between Preline ACT and Preline Ref ACT. In addition, significant increase was 

observed for the Preline Ref ACT compared to Preline Ref Baseline (p < 0.001, Wilcoxon). For 

the Preline Baseline and Preline Ref Baseline group, a significant increase in calcium level was 

observed in Preline Ref Baseline (p < 0.01, Wilcoxon). 

A significant increase in calcium level (Figure 1.9B) was observed in Neptune ACT 

compared to Neptune Baseline (p < 0.001, Tukey). Further, between Neptune ACT and Neptune 

Ref ACT, no difference was observed in calcium level. A significantly higher calcium level 

was observed in Neptune Ref ACT compared to Neptune Ref Baseline (p < 0.001, Tukey). A 

significantly higher calcium concentration was observed in Neptune Ref Baseline than in 

Neptune Baseline (p < 0.05, Tukey). 

 

 

 

 

 

 

 

 

 

Figure 1.9. Plasma calcium concentration in Preline (A) and Neptune (B) S-CCS, both in the Baselines for 

each system and after Acute Test Challenge (ACT). Comparative Reference groups are also included. In the 

boxplot, the upper line represents the 75% quantile, middle line: medians, 50% quantile, and lower line: 25% 

quantile. The black (square) dot represents the mean and the colored dots represent outliers.  Significance 

levels are p<0.05 (*), p<0.01 (**) and p<0.001(***), p<0.0001(****), ns = no significance as assessed by 

Wilcoxon post-hoc test for the Preline groups and Tukey’s post-hoc test for the Neptune groups.   
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Plasmatic Magnesium Concentration 

A significant increase in the magnesium (Figure 1.10A) concentration was observed in 

Preline ACT compared to Preline Baseline (p < 0.0001, Wilcoxon). No difference in 

magnesium was observed between Preline ACT and Preline Ref ACT. In addition, significantly 

higher magnesium concentration was observed in the Preline Ref ACT compared to Preline Ref 

Baseline (p < 0.001, Wilcoxon). Between Preline Baseline and Ref Baseline group, no 

difference in magnesium level was observed. 

A significant increase (Figure 1.10B) in magnesium level was observed in Neptune ACT 

compared to Neptune Baseline (p < 0.001, Tukey). Further, in Neptune Ref ACT a significant 

increase was observed compared to Neptune ACT (p < 0.01, Tukey). A significant increase in 

magnesium was also observed in Neptune Ref ACT compared to Neptune Ref Baseline (p < 

0.001, Tukey). For the Neptune Baseline and Neptune Ref Baseline, significant increase in 

magnesium concentration was observed in Neptune Ref Baseline (p < 0.01, Tukey). 

 

Figure 1.10. Plasma magnesium concentration in Preline (A) and Neptune (B) S-CCS, both in the 

baselines for each system and after the Acute Test Challenge (ACT). Comparative reference groups are 

also included. In the boxplot, the upper line represents the 75% quantile, middle line: medians, 50% 

quantile, and lower line: 25% quantile. The black (square) dot represents the mean and the colored dots 

represent outliers. Significance levels are p<0.05 (*), p<0.01 (**) and p<0.001(***), p<0.0001(****), ns 

= no significance as assessed by the Wilcoxon post-hoc test for the Preline groups and Tukey’s post-hoc 

test for the Neptune groups.      
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Plasmatic Glucose Concentration  

In the comparisons between (Figure 1.11A), Preline ACT – Preline Baseline, Preline 

ACT – Preline Ref ACT, Preline Ref ACT – Preline Ref Baseline, no difference was observed 

among the groups. For Preline Baseline and Preline Ref Baseline, a significantly lower glucose 

level was observed in Preline Baseline compared to Preline Ref Baseline (p < 0.05, Tukey). 

A significant increase in glucose level (Figure 1.11B) was observed in Neptune ACT 

compared to Neptune Baseline (p < 0.05, Tukey). Further, in Neptune Ref ACT, a significantly 

higher glucose level was observed compared to Neptune ACT (p < 0.001, Tukey). A significant 

increase in glucose level was observed in Neptune Ref ACT compared to Neptune Ref Baseline 

(p < 0.05, Tukey). For the Neptune Baseline and Neptune Ref Baseline, significant increase 

was observed in Neptune Ref Baseline (p < 0.001, Tukey). 

 

 

 

Figure 1.11. Plasma glucose concentration in Preline (A) and Neptune (B) S-CCS, both in the baselines for 

each system and after the Acute Test Challenge (ACT). Comparative reference groups are also included. In the 

boxplot, the upper line represents the 75% quantile, middle line: medians, 50% quantile, and lower line: 25% 

quantile. The black (square) dot represents the mean and the colored dots represent outliers. Significance levels 

are p<0.05 (*), p<0.01 (**) and p<0.001(***), ns = no significance as assessed by Tukey`s post-hoc test for 

Preline and Neptune groups.    
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Plasmatic Lactic Acid Concentration 

A significant increase (Figure 1.12A) in the lactic acid concentration was observed in 

Preline ACT compared to Preline Baseline (p < 0.0001, Wilcoxon). No difference was observed 

between Preline ACT and Preline Ref ACT. In addition, significant increase was observed in 

Preline Ref ACT compared to Preline Ref Baseline (p < 0.05, Wilcoxon). Between the Preline 

Baseline and Preline Ref Baseline group, no difference was observed in lactic acid level. 

Between Neptune ACT and Neptune Baseline (Figure 1.12B), a significant increase in 

lactic acid level was observed for Neptune ACT (p < 0.001, Tukey). However, between Neptune 

ACT and Neptune Ref ACT, no difference was observed. A significant increase in lactic acid 

level was observed in Neptune Ref ACT compared to Neptune Ref Baseline (p < 0.001, Tukey). 

Significant lower lactic acid concentration was observed for the Neptune Baseline compared to 

the Neptune Ref Baseline (p < 0.001, Tukey)  

 

 

 

 

 

 

 

 

 

Figure 1.12. Plasmatic lactic acid concentration in Preline (A) and Neptune (B) S-CCS, both in the baselines 

for each system and after the Acute Test Challenge (ACT). Comparative reference groups are also included. 

In the boxplot, the upper line represents the 75% quantile, middle line: medians, 50% quantile, and lower line: 

25% quantile. The black (square) dot represents the mean and the colored dots represent outliers.  Significance 

levels are p<0.05 (*), p<0.01 (**) and p<0.001(***), p<0.0001(****), ns = no significance as assessed by the 

Wilcoxon post-hoc test for the Preline groups and Tukey’s post-hoc test for the Neptune groups.       



 

 

40 
 

Discussion of Methodology 

Discussion of Methods: Chapter 1 – Acute Challenge Test in Two S-CCS  

When comparing different rearing conditions (Preline and Neptune versus their 

Reference), a factorial design including replicates of this experiment would be preferred. This 

implies that all fish in the experiment originated from the same genetic strain and were reared 

in the same conditions during the freshwater and seawater stage. 

The samplings of the ACT and baseline treatment was a one-time event, and no 

replicates were conducted. Ideally, all the systems should have replicates, and the physical 

environmental parameters should be controlled. In order to achieve a good comparison, 

sampling from two S-CCS and reference groups was conducted. The experiment was divided 

into two similar experiments; experiment 1 (Preline – Preline Reference) and experiment 2 

(Neptune – Neptune Reference). Hence, the fish in the Preline and Neptune groups experienced 

similar rearing conditions during the experimental period. However, in a large-scale production 

study, identical environmental conditions between the experimental groups are impossible to 

achieve, in contrast to small-scale lab experiments. Despite these factors and variations, the 

present results from both the S-CCS systems clearly shows a similar impact and effect on post-

smolt reared within these systems.  

The experiment consisted of two treatments (Baseline and ACT), logistics and long 

distances between the locations made it impossible to conduct the samples in both groups on 

the same day. This applied to the samplings in both experiments. In experiment 1 (Preline 

system) the samplings for both groups were conducted within a period of 10 days. In experiment 

2, (Neptune system) the samplings were conducted within two days. The baseline and ACT 

sampling at each location were conducted the same day, which was important since some of 

the measured parameters are influenced by feeding time, daylight, temperature and other 

factors. For instance, cortisol follows the circadian rhythm that releases varied levels of cortisol 
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during the day (trigged by temperature, photoperiod, and feeding time) in the fish (Barton, 

2002; Mommsen et al., 1999; Wendelaar Bonga, 2011).   

 In the two S-CCS (Preline and Neptune), the water parameters in the systems were quite 

stable during the experimental period, as a result of the fixed water inlet being at a depth of 25–

30 m. For the fish in the reference groups reared in the open sea cages, the locations were 

exposed to different water masses during the experimental period due to stratification. In 

addition, the fish swam freely and distributed themselves over various depths, making it hard 

to determine precisely which parameter the fish were exposed to, in contrast to fish reared in 

the S-CCS. Consequently, this swimming behavior might cause variety in the fish material that 

were part of the experiments.   
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Discussion of Results 

 

Cortisol 

The main glucocorticoid produced by fish is cortisol, which, besides its central role in 

the stress response and stress-related homeostasis, influences many other processes, such as 

behavior, growth, reproduction, and osmoregulation (Wendelaar Bonga, 1997; Mommsen et al, 

1999). Cortisol is also central for its involvement in the “fight-or-flight” response and 

temporary increase in energy production, at the expense of processes that are not required for 

immediate survival (Cannon, 1915). Thus, plasma cortisol is a widely used indicator of stress 

in fish (Wendelaar Bonga, 1997). Cortisol syntheses and its release from internal cells have a 

delay of several minutes, making it possible to measure the resting level of this hormone in fish. 

Fish that are in a state of good welfare increase cortisol levels to react to an acute challenge 

according to the concept of allostasis (Korte et al., 2007). This contrasts with fish that are 

exposed to chronic stress, where plasma cortisol falls back to resting levels, even though the 

fish may be responding to the stressor (Vijayan & Leatherland, 1990). 

In the present study, both groups reared in S-CCS (Preline and Neptune) showed an 

acute increase of cortisol levels 1 hour after exposure to an ACT, which could be an indication 

of a good state of welfare for the fish. Further, studies have showed that salmonids exposed to 

a chronic stress situation have a reduced cortisol response to an acute stressor (Grassie et al., 

2013; Madaro et al., 2016). In this experiment, both reference groups showed a lower cortisol 

response to ACT compared to the S-CCS groups. This might imply that long-term exposure of 

a suboptimal environment has an impact on reduced cortisol response for the reference groups 

in open pens. The baseline groups in both S-CCS showed lower cortisol levels compared to the 

reference baseline group. Baseline levels of plasma cortisol could give information about 

whether the fish are experiencing chronic stressors (lice pressure, diseases, density, feed, 
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environmental conditions, maturation status). They may even indicate future survival, given 

that chronic stress also affects the immune response in fish (Iversen & Eliassen, 2014). The 

findings in this study suggest that fish reared in S-CCS show a lower stress response compared 

to the reference groups in open pen. However, other influencing factors cannot be disregarded 

as a possible cause of this difference (Barton, 2002). Knowledge of normal plasmatic cortisol 

concentration baseline range in Atlantic salmon cultured in Norway across multiple situations 

is scarce and could help with the interpretation of future results.   

Chloride and Sodium 

For the ions, an acute stressor acts on the tight junctions of the epithelium, with induced 

leakage of chloride and sodium as a consequence (McDonald & Milligan, 1997). Nevertheless, 

plasma ions as measurements for chronic stress or long-term exposure to a stressor are difficult 

to interpret since the ion concentration is context-specific and is affected by internal and 

external factors (McDonald & Milligan, 1997). In the present study plasma chloride and sodium 

concentrations showed an increase in all the ACT groups. The increment of ions could be 

related to increment of ions leaked from the surrounding environment or to water loss, causing 

dehydration and increasing the ion concentration (differences in potassium and phosphorus 

represented in appendix I supports that this was not related to dehydration). The ACT groups 

showed no difference in the comparison between both S-CCS and reference groups. This 

indicates that when exposed to an acute stressor, the leaking of ions is similar in both the S-

CCS and in the reference systems. These findings are similar to the study done by Einarsdòttir 

and Nilssen (1996), where chloride concentrations after a stress challenge, showed similar 

response between the experimental groups. One reason for this could be that the plasma ions 

did not manage to reach their maximum within the sampling period (>1 hour), and the maximal 

level of ion leakage over time is probably dependent on the environment and salinity 

concentrations in the systems. Also, another explanation could be that the plasma ions reached 
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a maximum and therefore no difference between was determined for ACT in the S-CCS groups 

and reference.   

For the baseline groups, there was a clear difference in the plasma sodium concentration, 

indicating that fish reared in S-CCS have a lower level of sodium than in the reference group. 

Further, the plasma chloride concentration for baseline in the Preline system was lower than the 

Reference Baseline. This may be a result of exposure to water with different salinities (Preline 

has an inlet from 30 m depth) and ion concentrations. In the open sea, salinity is high and stable 

(35‰) in contrast to the fjords where salinity is affected by seasonal changes and present a 

higher stratification (Rinde et al., 2014). For the Neptune system and the reference group, the 

plasma chloride concentration was close to similar, indicating that the chloride level in the 

groups is not affected by the rearing system.  

Calcium 

Several different hormones and receptors interact in maintaining extracellular Ca2+ 

levels, which need to be tightly regulated. Prolactin and growth hormone are hypercalcemic 

(Pang et al., 1971), while calcitonin and stanniocalcin are hypocalcemic (Copp et al., 1962; 

Hirsch et al., 1964). Moreover, cortisol has been shown to stimulate calcium uptake through 

the gills in salmonids (Flik & Perry, 1989) and to influence intracellular calcium concentrations 

(Mommsen et al., 1999). 

The present findings showed an increase in calcium concentration in all the ACT groups, 

suggesting an increase of ion leakage as a consequence of either the ACT-test or dehydration. 

The ACT groups showed no significance in the comparison between S-CCS and reference. This 

indicates that when exposed to an acute stressor, the leaking of ions from the fish is similar in 

both the S-CCS and reference systems. As for the other ions, it should be noted that the plasma 

calcium may not manage to reach its maximum within the sampling period (>1 hour). For the 

baseline groups, there was a difference in the plasma calcium concentration, indicating that fish 



 

 

45 
 

reared in S-CCS have a lower level of calcium than in the reference, which suggests that plasma 

calcium concentration is affected by the rearing system and is related to the environment.  

Magnesium  

Changes in magnesium balance are a good indicator of acute stress. Studies have shown 

that there is a high correlation between increased plasma magnesium and mortality after 

undergoing a stressor (Iversen & Eliassen, 2009; Liebert & Schreck, 2006). In addition, plasma 

magnesium as a measurement for chronic stress, may be difficult to interpret since the plasma 

magnesium is context-specific and is affected by internal and external factors (McDonald & 

Milligan, 1997). An increase of plasma magnesium levels was observed for ACT groups in both 

the S-CCS, and the baseline response showed lower individual variability compared to 

reference groups. This could be a result of water intake from a deeper layer in the S-CCS, as 

explained earlier. Further, for the Preline Reference group, significantly higher concentration 

was observed in the ACT than in the baseline. Moreover, in the Preline reference groups there 

was high individual variability compared to the Preline group.  

For the Neptune system, the reference ACT group showed a higher individual response 

compared to the Neptune ACT. These results imply that the low variability of magnesium 

concentration in Neptune system are affected by rearing conditions. In contrast to the Preline 

groups, where no difference in magnesium concentration was found between the ACT and 

baseline groups.  

Glucose 

Glucose is a central and fundamental energy substrate in all vertebrate metabolism 

(Mergenthaler et al., 2013). The glucose can be absorbed through the gut during digestion or 

produced endogenously by the kidney and the liver, through either the breakdown of glycogen 

(glycogenolysis) or synthesis (gluconeogenesis) from amino acids and/or glycerol. Glucose is 

also produced through the Cori cycle, where lactate produced by anaerobic glycolysis in 
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muscles is transported to the liver and converted to glucose (Lehninger et al., 2005; Mommsen 

et al., 1999). The regulation of glucose availability and storage is tissue-specific, and both 

glucocorticoids and catecholamines play a central role in glucose regulation during stress in 

fish (Faught & Vijayan, 2016; Mommsen et al., 1999). An increase in plasma cortisol stimulates 

the glycogenolysis and starts the conversion of glycogen stored in the tissue in glucose. The 

glucose is then released into the bloodstream (Barton & Iwama, 1991). In the present study, the 

concentration of cortisol levels was similar for both the Preline and Neptune system. These 

findings correspond to the study of Einarsdottir and Nilssen (1996) showing no significant 

changes in plasma glucose in Atlantic salmon exposed to an acute stressor. Moreover, increased 

levels of plasma glucose could be used for investigation after having undergone an acute stress 

experience but should then be compared to a baseline group since glucose levels are also 

dependent on nutrient types, diet type, and other factors (Mommsen et al., 1999).  

The plasma glucose level in the Preline group was similar for the ACT and reference 

groups. The increase in plasma glucose is a relatively slow response to stress and tends to reach 

a maximum after approximately 3–6 hours in Atlantic salmon (Olsen et al., 2002). This could 

explain that the groups did not manage to reach its maximum level of plasma glucose within 

the sampling period (>1 hour). Further, the overall values of plasma glucose in the Preline and 

reference fish were higher compared to the Neptune groups. The observed difference among 

these systems should be seen in context because glucose concentration is influenced by external 

and internal factors (Mommsen et al., 1999). For instance, the Preline and Neptune groups 

originate from different strains and had different diets during this study and the sampling was 

not conducted the same day.  

In the Neptune groups, difference in plasmatic glucose concentration was observed 

between ACT and baseline, suggesting that sampling within 1 h was timely enough to observe 

differences between these systems, in contrast to the observations in Preline.  
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Lactic Acid  

 Lactate is the product of the anaerobe glycolysis in the cells, which is a result of an 

insufficient amount of oxygen available for the aerobe cell metabolism. This could be achieved 

when low oxygen levels are reached in the water (Remen et al., 2012) or by hard physical 

activity (Milligan & Girard, 1993). Lactate is mainly an indication of high muscle activity that 

often relates to an exposure of a stressor for fish (Iversen et al., 2003).  

In the Preline system, an increase in lactic acid concentration is observed for the ACT 

groups, while the corresponding baseline showed a low response. This might be explained by 

a high muscle activity for fish reared in the Preline system. 

Further, for the Preline Reference group, although some difference (p < 0.05) was shown 

between ACT and baseline, the high individual variability in these groups could mask the 

increment of lactic acid concentration as a result of ACT. Therefore, the reduced ability to 

increase lactic acid after being exposed to an acute stressor for the Preline reference group, 

suggest a higher stress level in the fish from this group. Moreover, the same trend is shown for 

the Neptune system, an increase in lactic acid concentration is observed for the ACT group, 

while the corresponding baseline showed a low and concentrated response, again, indicating 

high muscle activity for fish reared in the Neptune system. This probably relates to the exercise 

achieved in the Preline and Neptune system. 
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Conclusion  

The ACT experiments determined that post-smolt reared in S-CCS show a general 

stronger response to an acute stress test and had a lower baseline value at rest. The stable water 

conditions and exposure to continuous water current generated by the two S-CCS have a 

positive impact on the fish based on several of the parameters measured in this study.  

• H01: Post-smolt rearing methods (S-CCS or cage) have no significant effect on 

plasmatic cortisol concentration after an acute challenge test (ACT), is rejected 

for fish reared in S-CCS, and thereby H11 is accepted. The post-smolt rearing 

method (S-CCS or sea cage) have a significantly effect on plasmatic cortisol 

concentration after an ACT.  

• H02: Post-smolt rearing methods (S-CCS or open reference cage) have no 

significant effect on plasmatic chloride concentration after an acute challenge 

test (ACT) is accepted. No difference was observed in plasmatic chloride 

between the ACT groups in S-CCS and open reference cage in the experiments. 

• H03: Post-smolt rearing methods (S-CCS or open reference cage) have no 

significant effect on plasmatic sodium concentration after an acute challenge test 

(ACT) is accepted. No difference was observed in plasmatic sodium between 

the ACT groups in S-CCS and open reference cage in the experiments.  

• H04: Post-smolt rearing methods (S-CCS or open reference cage) have no 

significant effect on plasmatic calcium concentration after an acute challenge 

test (ACT) is accepted. No difference was observed in plasmatic calcium 

between the ACT groups in S-CCS and open reference cage in the experiments.  

• H05: Post-smolt rearing methods (S-CCS or open reference cage) have no 

significant effect on plasmatic magnesium concentration after an acute challenge 

test (ACT) is rejected. Difference in magnesium level for the ACT was observed 
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between the rearing methods. In Preline groups, no difference in ACT was found 

but was evident for the Neptune system, therefore H15 is accepted. The post-

smolt rearing method (S-CCS or sea cage) have a significant effect on plasmatic 

magnesium concentration after an ACT. 

• H06: Post-smolt rearing methods (S-CCS or open reference cage) have no 

significant effect on plasmatic glucose concentration after an acute challenge test 

(ACT) is rejected. For the Preline system no difference was observed in glucose 

level, in contrast to the Neptune system were a difference was shown in glucose 

level for ACT, and consequently, H16 is accepted. The post-smolt rearing 

method (S-CCS or sea cage) have a significant effect on plasmatic glucose 

concentration after an ACT. 

• H07: Post-smolt rearing methods (S-CCS or open reference cage) have no 

significant effect on plasmatic lactic acid concentration after an acute challenge 

test (ACT) is accepted. No difference was observed in lactic acid between the 

ACT groups in S-CCS and open reference cage in the experiments.      
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Chapter 2 – Benchmark Analysis of Six Generations Reared in the 

Preline and Reference Groups 

Objectives 

This study aims to benchmark biological performance (growth, feed conversion ratio, 

mortality, and sea lice infestation) in fish reared in the Preline system (S-CCS), and fish reared 

in a traditional open cage system. The study follows the fish from stocking in seawater until 

harvest throughout two phases; phase 1 – post-smolt and phase 2 – grow-out. The experiment 

was based on several hypotheses in both phases. 

Hypotheses for phase 1 (post-smolt, a):  

H01a: Rearing Atlantic salmon post-smolt in Preline system has no significant effect on 

growth compared to the reference group. 

H11a: Rearing Atlantic salmon post-smolt in Preline system has a significant effect on 

growth compared to the reference group. 

H02a: Rearing Atlantic salmon post-smolt in Preline system has no significant effect on 

feed conversion ratio compared to the reference group. 

H12a: Rearing Atlantic salmon post-smolt in Preline system has a significant effect on 

feed conversion ratio compared to the reference group. 

H03a: Rearing Atlantic salmon post-smolt in Preline system has no significant effect on 

mortality compared to the reference group. 

H13a: Rearing Atlantic salmon post-smolt in Preline system has a significant effect on 

mortality compared to the reference group. 

H04a: Rearing Atlantic salmon post-smolt in Preline system has no significant effect on 

sea lice infestations compared to the reference group. 

H14a: Rearing Atlantic salmon post-smolt in Preline system has a significant effect on 

sea lice infestations compared to the reference group. 
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Hypotheses for phase 2 (grow-out in open sea cages, b): 

H01b: Rearing Atlantic salmon post-smolt in Preline system before transfer to open sea 

cages for a grow-out phase has no significant effect on growth during the grow-out phase 

compared to the reference group. 

H11b: Rearing Atlantic salmon post-smolt in Preline system before transfer to open sea 

cages for a grow-out phase has a significant effect on growth during the grow-out phase 

compared to the reference group. 

H02b: Rearing Atlantic salmon post-smolt in Preline system before transfer to open sea 

cages for a grow-out phase has no significant effect on feed conversion ratio. 

H12b: Rearing Atlantic salmon post-smolt in Preline system before transfer to open sea 

cages for a grow-out phase has a significant effect on feed conversion ratio. 

H03b: Rearing Atlantic salmon post-smolt in Preline system before transfer to open sea 

cages for a grow-out phase has no significant effect on mortality. 

H13b: Rearing Atlantic salmon post-smolt in Preline system before transfer to open sea 

cages for a grow-out phase has a significant effect on mortality. 

H04b: Rearing Atlantic salmon post-smolt in Preline system before transfer to open sea 

cages for a grow-out phase has no significant effect on sea lice infestations. 

H14b: Rearing Atlantic salmon post-smolt in Preline system before transfer to open sea 

cages for a grow-out phase has a significant effect on sea lice infestations 
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Materials and Methods  

Fish Material and Rearing Conditions  

In all generations (Table 2.1), the eggs were incubated in water (approximately 8–10oC). 

The alevins were first fed approximately 390-degree days (dC) post-hatching, in 6 m tanks 

(circular, green, fiberglass, rearing volume 75 m3) at constant light and in heated water 

(approximately 13–14 oC). The light was provided by a fluorescent tube mounted under the 

tank cover (light intensity 50 lux at 0.5 m depth). When the fish reached a size of approximately 

6–8 g, they were transferred from 6 m tanks to 8 m (circular, green fiberglass, volume 90 m3), 

reared at constant light and further fed a standard dry diet (Ewos, Norway), according to 

temperature and fish size (Austreng et al., 1987). Finally, the fish were vaccinated at a size of 

50–60 g and were then transferred to 15 m tanks (circular, green, fiberglass, volume 150 m3) 

where they were supplied with ambient temperature freshwater and reared as described above. 

In all tanks, the oxygen content in outlet water was measured every day and was kept above 

80%. During the experimental period, the 0+ fish experienced a freshwater temperature ranging 

from 12 to 20 oC, while the 1+ smolts experienced a temperature varying from 6 to 18oC.  

To stimulate parr-smolt transition, a traditional photoperiod regime was conducted for 

all generations (Handeland & Stefansson, 2001). The treatment included a decrease in day-

length from LD24:0 to LD12:12 for 5 weeks, followed by another 4 weeks on LD24:0. At the 

end of photoperiod treatment, fish in all generations showed typical morphological and 

physiological changes characteristics of smolting, including dark fin margins and silvery scales, 

and high gill NKA activity (McCormick, 1993; Stefansson et al., 2003). When the fish had 

completed the parr-smolt transformation, the group was split into two equal-sized groups 

(Preline and reference) and transferred to seawater by a well boat within three weeks. 
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Table 2.1: Summary of rearing conditions in freshwater stage (generation, strain) and 

production data (smolts, incubation temperature, degree days; from fertilization to first 

feeding, first feeding date, rearing temperature).     

 
Generation Smolts 

(0+,1+) 

Incubation 

Temperature 

Degree days First feeding 

Date 

Rearing 

Temperature 

Strain 

Gen 1 1+ 7.4 oC 824 11.05.14 10.2 oC Salmobreed 

QTL duo 

Gen 2 0+ 7.5 oC 914 14.02.15 15.1 oC Salmobreed 

QTL duo 

Gen 3 1+ 7.4 oC 810 08.05.15 10.1 oC Salmobreed 

QTL duo 

Gen 4 0+ 7.4 oC 902 18.02.16 15.0oC Salmobreed 

QTL duo 

Gen 5 1+ 7.5 oC 826 13.05.16 10.2 oC Salmobreed 

QTL duo 

Gen 6 0+ 7.5 oC 915 09.02.17 15.1 oC Salmobreed 

QTL duo 

 

Experimental Design  

The fish used in this study were 0+ and 1+ Atlantic salmon smolts of the Salmobreed 

strain that had been reared at Sjøtroll Havbruk AS (Kjærelva, Fitjarstern Norway) from hatching 

to the smolt stage. A total of six generations were part of the experiment Generation 1 (n = 

348,661), Generation 2 (n = 350,501), Generation 3 (n = 320,559), Generation 4 (n = 255,033), 

Generation 5 (n = 364,701) and Generation 6 (n = 464,540). 

Before seawater transfer, each generation was divided into two separate groups; Preline 

(S-CCS) and reference group. The groups were then followed through two experimental phases;  

Phase 1. Post-smolt in seawater (S-CCS): In the period from May 2015 to February 

2019, a total of six generations of salmon post-smolts were transferred from freshwater 

(Storelva, Fitjar) to seawater by well boat (Preline and reference). Generation 1, 3 and 5 were 

stocked during spring, and generation 2, 4, and 6 were stocked during fall.  

In phase 1 post-smolt, the Preline group fish were reared 4-6 months from approximately 

100 to 284–844 g (rearing conditions presented in Table 2.3). 
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Phase 2. Grow-out phase in seawater: After undergoing post-smolt phase (4–6 months), 

the Preline fish were transferred by a well boat to a new location that was equipped with 

traditional sea cages for a further grow-out phase (Figure 2.3), where they grew 10-12 months 

from approximately 284–844 g (final weight phase 1) to 3,360–5,700 g (final weight phase 2). 

The grow-out experiment lasted until the first of the two groups (Preline and reference) were 

slaughtered (rearing conditions presented in Table 2.4).  

A schematic representation of the experimental protocol is depicted in Figure 2.1 and 

overview over the facilities in Figure 2.2 and Table 2.2. 

 

Figure 2.1. Schematic setup of the experimental protocol; Phase 1. Post-smolt in seawater 

(Preline and reference). Phase 2. Grow-out phase in seawater (Preline and reference). 
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Table. 2.2. Location, capacity, area and coordinates of the facilities   

Location Capacity 

(tons) 

Location  

number 

Municipality Coordinates 

 

Bognøy 1560 13209 Alver 60° 37.9230 N' 5 29.7310 E' 

Buholmen 5460 11543 Austevoll 60° 11.2550 N' 5 .4 8919 E' 

Djupevika 3900 20455 Kvinnherad 60° 2.45700 N' 6 .5620 E' 

Hestabyneset 3120 18015 Tysnes 59° 57.2180 N' 5 27.0840 E' 

Rongøy 4680 29276 Øygarden 60° 30.5600 N' 4 55.9020 E'   

Sagen 780 32137 Samnanger  60° 20.9030 N' 5 38.6420 E'   

Sauøy 3120 11758 Øygarden 60° 35.6370 N' 4 51.6750 E'   

Skorpo 3120 32877 Bjørnafjorden 60° 10.3990 N' 5 17.6210 E'   

Tobbholmane 3120 100054 Austevoll 60° 1.4590 N' 5 18.4890 E'   

Figure 2.2. Overview over the facilities used in the experiment for six generations. Preline fish were 

transferred from Sagen to open net-pen facility, marked with a green marker. The reference group was 

reared at the same open net facility throughout phase 1 and 2 and are marked with a blue marker. Black 

dots represent open pen farms.   
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Figure 2.3. Review of the experimental locations. Preline fish were transferred from Sagen 

(Preline) to open net-pen facilities (after 4–6 months), and the reference group was reared at 

the same open net facility throughout phase 1 and 2, for each generation (0+,1+ indicates smolts 

type). See Figure 2.2 and Table 2.2 for location details. 
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Table 2.3: Summary of rearing conditions. Production groups (date, generation, location) and 

production data (number of fish, temperature and oxygen) in six generations of post-smolt in 

phase 1. 

Period of 

deployment 

Generation Location Fish N Temperature (°C) Oxygen saturation (%) 

Sum Mean Min Max Mean Min Max 

May 2015 Generation 1 

Reference 

Rongøy 191,378 1,263 11.9 7.4 16 83.2 66 96.5 

May 2015 Generation 1 

Preline 

Sagen 157,283 1,033 9.7 8.3 14.2 90.6  75 100 

Oct 2015 Generation 2 

Reference 

Tobbholmane 191,740 1,063 7.9 5.1 12.1 92  85 105 

Oct 2015 Generation 2 

Preline 

Sagen 158,761 1,399 10.4 6.9 12.5 81  71 93  

May 2016 Generation 3 

Reference 

Skorpo 164,286 1,819 14.8 8.7 21.7 96.4 74 105 

May 2016 Generation 3 

Preline 

Sagen 156,273 1,185 9.6 7.5 16 95.5 75.3 97 

Nov 2016 Generation 4 

Reference 

Bogno 162,390 863.8 7.9 5.4 11.8 100 75 105 

Nov 2016 Generation 4 

Preline 

Sagen 92,643 1,064 9.8 6.4 11 79.3 73 97 

Apr 2017 Generation 5 

Reference 

Sauøya 146,338 804.2 10.2 6.9 14.5 98.4 86.4 105 

Apr 2017 Generation 5 

Preline 

Sagen 218,363 806.9 10.2 8.2 13.5 96 86.5 105.5 

Oct 2017 Generation 6 

Reference 

Bogno 177,105 877 7.9 3.4 12.2 98 76.2 105.7 

Oct 2017 Generation 6 

Preline 

Sagen 287,435 919.9 8.2 5 10.6 87 78.5 95 
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Table 2.4: Summary of rearing conditions. Production groups (date, generation, location) and 

production data (number of fish, temperature and oxygen) in six generations during phase 2 – 

grow-out. Preline fish are now transferred to open net-pen facilities. 

Period of 

transfer 

Generation Location Fish N Temperature (°C) Oxygen saturation (%) 

Sum  Mean Min   Max  Mean  Min  Max  

Aug 2015 Generation 1 

Reference 

Rongøy 147,383 2,591.4 9.4 4.56 15.1 83.2 66.7 100.9 

Aug 2015 Generation 1 

Preline 

Djupevika 139,182 2,553.8 9.2 5.2 15.4 90.6 74 105 

Mar 2016 Generation 2 

Reference 

Tobbholmane 178,886 3,051.6 11.6 5 17 92 95 105.8 

Mar 2016 Generation 2 

Preline 

Hestabyneset 142,703 3,058.4 11.7 5.2 17.1 81 83.3 93 

Sep 2016 Generation 3 

Reference 

Skorpo 119,118 3,181.2 9.7 3.9 17.2 96.4 74.1 105 

Sep 2016 Generation 3 

Preline 

Buholmen 139,924 3,246.4 9.8 4.9 16.9 95.5 75.3 105 

Feb 2017 Generation 4 

Reference 

Bogno 152,635 2,884.6 11.2 5.9 17.4 100.5 75 105.8 

Feb 2017 Generation 4 

Preline 

Rongøy 77,465 3,033.6 11.7 5.9 16.2 79.2 73 97 

July 2017 Generation 5 

Reference 

Sauøya 111,177 2,929.4 9.5 2.8 15.9 98.4 86.4 105 

July 2017 Generation 5 

Preline 

Djupevika 208,944 2,766.8 9.0 2.7 16.3 96.1 86.5 105.5 

Feb 2018 Generation 6 

Reference 

Bogno 133,304 3,439.5 9.79 2.9 17.3 98 76.2 105.7 

Feb 2018 Generation 6 

Preline 

Hestabyneset 119,033 3,628.8 10.34 4.9 17.8 87 78.5 95 
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Experimental Facilities: S-CCS System (Preline) 

The Preline groups were reared in the Preline platform during the post-smolt phase; 

more information regarding this system is depicted in Chapter 1.  

Experimental Facilities: Conventionally Open Sea Cages  

The reference groups were reared in open 160 m conical circular sea cages (Figure 2.4). 

Each fish farm consisted of six to ten circular cages with a rearing capacity of up to 200,000 

Atlantic salmon, and an operating feeding station. All the open net facilities in this experiment 

are located along the western Norwegian coast and are summarized in Figure 2.3 and Table 2.2; 

a timeline of the stocking period is presented in Figure 2.5.  

Figure 2.4. Atlantic salmon aquaculture farm (A) and (B) a schematic overview of the conical 

circular cage (Spissnot). 

 

During the experimental periods, all husbandry practices, including sea lice counting, 

were conducted in accordance with standard Atlantic salmon production protocol for Lerøy 

Vest AS. The fish were fed a standard dry diet (Ewos, Norway) in relation to environmental 

temperature and fish size (Austreng et al., 1987). To avoid early maturation, all groups were 

exposed to artificial led-light (35 W/m2, submerged) from mid-December to the end of June. 

A 

B 
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Temperature and oxygen (Table 2.3 and Table 2.4) were measured daily at -3 m by automatic 

sensors (OxyGuard, Sterner), and all environmental data was registered in Fishtalk 

(AkvaGroup, Bryne).  

 

Data Collection  

Biological production data and environmental data were collected regularly (daily and 

weekly) from May 2015 to February 2019 and included six generations of Atlantic salmon, 

from smolt to slaughter (Preline and reference). Parameters included and investigated in this 

study are; 1. Growth (daily), 2. Feed conversion (daily), 3. Mortality (daily), 4. Sea lice 

infestations (weekly), and 5. Biomass estimation. All the measurements were conducted 

according to regulations and standard production protocol for Norwegian aquaculture.  

Figure 2.5. Period of stocking for the six generations in the experimental period from May 2015 to January 

2019. The dark-green rubric represents fish reared in the Preline system (Generation 1, 3 and 5 represents spring 

stocking and Generation 2, 4, and 6 represents fall stocking), and the light-green rubric represents the following 

grow-out phase in open sea cage until harvested. The blue rubric represents the reference group reared in a 

conventional open sea cage over the same periods in each generation. 
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1. Growth: Daily calculations on weight gain based on feed output was completed by 

Fishtalk (Feed conversion ratio; FCR: 1.1). Minor dips in the weight curve figures are caused 

by short periods of malfunctioning feeding equipment. Since the Preline and reference facilities 

were located in different places, which varied in surrounding seawater temperature, a weight 

model incorporating growth rate per day dependent on the daily temperature was employed 

(Thermal-unit Growth Coefficient, TGC). This model takes into account the optimal season 

temperature for fish growth (Iwama & Tautz, 2011). The following equation was used: 

TGC= (Final weight1/3 - Start weight1/3) x 1000/sum of daily temperature (°C) 

The specific growth rate (SGR) for weight was calculated (time interval is total number 

of days from initial weight to final weight) according to the formula: 

SGR (% body weight gain (%/day)) =  

[ln(Final weight(g)) – ln(Initial weight(g)) / (Time interval(days))]   x 100 

2. Feed conversion: The daily feed ratio (kg or tons) was registered in each location and 

the feed conversion (FC) factor was calculated using the following equation: 

FC = (feed provided / biomass increase). 

3. Mortality was counted daily in each group by employees at Lerøy Vest AS. 

4. Infestation of sea lice was counted every week by employees at Lerøy Vest AS, 

according to standard procedures by Mattilsynet (MTIF, 2017b).  

5. Biomass estimations in phase 1 and 2 was calculated by the values (estimated final 

weight and observed mortality) from spring and fall stockings (n = 3) in both phases.  

Assumption for the estimation, fish N = 200,000. These calculations were used:  

FishN = Fish200,000   x  [(Mortality%) / (100)] 

FishEstimated = Fish200,000 – FishN 

Estimated biomass = FishEstimated  x  Final weightEstimated  
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Statistical Analysis  

All statistical analyses were generated (and figures) using RStudio (Version 1.2.500, 

RStudio, Inc, Boston, MA, USA) and R (Version 3.6.1, R core team, Vienna, Austria), 

including following packages; Rcompanion (Magiafico, 2018), car (Fox & Weisberg, 2011). 

The datasets were checked for normality and homogeneity of variance assumptions using the 

Shapiro-Wilk test and the Levene’s test, respectively. To determine the degree of significance, 

a two-way ANOVA was conducted followed by Tukey post-hoc test. The degree of significance 

in this study was considered as significant when p-value < 0.05 (*). If the p-value is less than 

0.01, it is flagged with two stars (**). If a p-value is less than 0.001, it is flagged with three 

stars (***). If a p-value is less than 0.0001, it is flagged with four stars (****). The bar plots 

are plotted with ± standard error (SE). All the statistical results in this study are reported in the 

Appendix III.   
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Results 

The growth within the two groups (Preline and reference) varied for all the six 

generations in phase 1 and phase 2, respectively. These growth performances are based on 

empirical production data (mean registered weight plotted against time), and for this dataset (n 

= 1), a statistical analysis could not be performed. Consequently, this is a descriptive 

presentation of the data. More information is depicted in Figure 2.5 and Table 2.5. 
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Growth in Phase 1: Post-smolt  

Estimated weight; Generation 1, May 2015  

The two post-smolt groups in generation 1 were transferred to their respective 

experimental facilities in mid-May 2015 (Figure 2.6). Following transfer to sea, the Preline 

group consisted of 157,283 fish, while the open net-pen reference group (Rongøy) consisted of 

191,378 fish. The initial mean weight was 124.8 g (density 9.8 kg/m3) in the Preline group and 

120.4 g (density 0.8 kg/m3) in the reference group. The final weight at the end of the 

experimental phase (28 August, 106 days) was 539.7 g (density 42 kg/m3) in Preline group and 

648.8 g (density 4.5 kg/m3) in the reference group.  

 

 

Figure 2.6. Registered growth during phase 1 for the Preline and reference group in generation 

1 from 15 May to 28 August in 2015. The red dashed line represents the Preline group, whereas 

the turquoise line represents the reference group; this pattern applies to all graphs in this chapter. 
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Estimated weight; Generation 2, October 2015 

At the end of October 2015, the two post-smolt groups in generation 2 were transferred 

to their respective experimental facilities (Figure 2.7). When relocated to sea, the Preline group 

consisted of 157,761 fish, and the open net-pen reference group (Tobbholmane) consisted of 

191,740 fish. At stocking, the initial mean weight was 98.4 g in the Preline (density 7.85 kg/m3) 

group and 98.8 g (density 0.7 kg/m3) in the reference group. At the end of the experimental 

phase (11 March, 136 days), the final weight was 720 g (density 55.6 kg/m3) in the Preline 

group and 577 g (density 3.9 kg/m3) in the reference group.  

 

 

 

Figure 2.7. Registered growth during phase 1 for Preline and reference group in generation 2 

from 29 October 2015 to 11 March 2016. 
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Estimated weight; Generation 3, May 2016 

In generation 3, the two post-smolt groups were transferred to their experimental 

facilities in early May 2016 (Figure 2.8). Following relocation to sea, the Preline group 

consisted of 156,273 fish, while the open net-pen reference group (Skorpo) consisted of 164,286 

fish. The initial weight in the two groups was 113 g (density 8.8 kg/m3) in Preline and 109.4 g 

(density 0.6 kg/m3) in the reference group. The final weight at the end of the experimental phase 

(31 August, 123 days) was 487 g (density 37.7 kg/m3) in the Preline group and 844 g (density 

5.0 kg/m3) in the reference group.  

 

 

 

Figure 2.8. Growth during phase 1 for Preline and reference group in generation 3 from 1 May 

to the end of August 2016.  
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Estimated weight; Generation 4, November 2016 

In November 2016, the two post-smolt groups in generation 4 were transferred to their 

respective experimental facilities (Figure 2.9). The Preline group consisted of 92,643 fish, and 

the reference group (Bogno) in the open net-pen consisted of 162,390 fish when transferred to 

sea. The initial mean weight was 111.3 g (density 5.15 kg/m3) in the Preline group and 115 g 

(density 0.7 kg/m3) in the reference group. At the end of the experimental phase (19 February, 

109 days) the final weight was 450 g (density 20.7 kg/m3) in the Preline group and 365 g 

(density 2.1 kg/m3) in the reference group.  

 

 

 

Figure 2.9. Growth during phase 1 for Preline and reference group in generation 4 from 3 

November to 19 of February 2017. 
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Estimated weight; Generation 5, April 2017 

In mid-April 2017, the two post-smolt in groups in generation 5 were transferred to their 

experimental facilities (Figure 2.10). When relocated to sea, the Preline group consisted of 

218,363 fish, and the open net-pen reference group (Sauøya) consisted of 146,338 fish. At 

stocking, the initial mean weight was 133.6 g (density 14.5 kg/m3) in the Preline group and 

146.3 g (density 0.8 kg/m3) in the reference group. The final weight at the end of the 

experimental phase (4 July, 79 days) was 553.8 g (density 59 kg/m3) in the Preline group and 

419 g (density 2.2 kg/m3) in the reference group. 

 

 

 

Figure 2.10. Growth during phase 1 for Preline and reference group in generation 5 from 17 

April to 14 July 2017. 
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Estimated weight; Generation 6, October 2017 

The two post-smolt groups in generation 6 were transferred to their respective 

experimental facilities in October 2017 (Figure 2.11). Following transfer to sea, the Preline 

group consisted of 287,435 fish, while the open net-pen reference group (Bogno) consisted of 

177,105 fish. The initial mean weight was 110.8 g (density 15.9 kg/m3) in Preline group and 

114 g (density 0.7 kg/m3) in the reference group. The final weight at the end of the experimental 

phase (9 February, 111 days) was 284 g (density 35.8 kg/m3) in the Preline group and 366 g 

(density 2.4 kg/m3) in the reference group. 

 

 

 

Figure 2.11. Growth during phase 1 for Preline and reference group in generation from 22 

October to 9 February 2018. 
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Phase 1 - (Post-Smolt): Feed Conversion ratio, Mortality, Sea Lice Infestation and Growth 

performance.  

Overall, a lower feed conversion was registered in the Preline system during spring in 

the comparison between the reference groups (Figure 2.12 A). In the fall stockings, no 

difference in feed conversion was observed. In the spring stockings, a lower mortality was 

observed in the Preline group. Whereas for the fall stockings, lower mortality was observed in 

the reference group (Figure 2.12 B), however no significant difference was observed for 

mortality. The sea lice infestations (Figure 2.12 C) for fish reared in the Preline system were 

significantly lower in spring and fall compared to reference group (p < 0.05, two-way Anova). 

For the initial weight, a significant difference was observed between seasons (0+ and 1+ smolts) 

for Preline and reference groups (p < 0.05, two-way Anova). The final weight in spring was 

higher in reference group in contrast to the fall stockings, where final weight was higher in 

Preline group (Figure 2. 12 D).  Further, specific growth rate (SGR) and thermal growth 

coefficient (TGC) showed no significant difference between seasons and rearing systems. 

Figure 2.12. Registered feed conversion (A), mortality (B), sea lice infestations (C) and final weight (D)  

in phase 1 for spring (left) and fall (left) generations, mean ± SE (n = 3).     

 

 

 

 

B A 

C D 



 

 

71 
 

Growth in Phase 2: Grow-out  

Estimated weight; Generation 1, August 2015 

In August 2015, fish from the Preline system were transferred to an open net-pen facility 

for grow-out phase (Figure 2.13). Following the transfer, the Preline group (Djupevika) 

consisted of 155,989 fish and the open net-pen reference group (Rongøy) consisted of 188,420 

fish. The initial mean weight was 544 g (density 3.1 kg/m3) in the Preline group and 663.2 g 

(density 4.6 kg/m3) in the reference group. At the end of the experiment (31 May, 277 days), 

the final mean weight was 4,271.8 g (density 21.8 kg/m3) in the Preline group and 4,493.6 g 

(density 24.3 kg/m3) in the reference group.  

 

Figure 2.13. Growth during phase 2 in open net-pens for Preline group and reference group in 

generation 1 from 29 August 2015 to 31 May 2016. 
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Estimated weight; Generation 2, March 2016 

Fish from the Preline system were transferred to an open net-pen facility in March 2016 

for the grow-out phase. When relocated to the open net facility, the Preline group 

(Hestabyneset) consisted of 154,397 fish and the open net-pen reference group (Tobbholmane) 

consisted of 184,155 fish (Figure 2.14). The initial mean weight was 720.6 g (density 4 kg/m3) 

in the Preline group and 577.2 g (density 3.9 kg/m3) in the reference group. The final weight at 

the end of the experiment (28 November, 262 days) was 4,457.3 g (density 23.4 kg/m3) in the 

Preline group and 3,358.8 g (density 22.1 kg/m3) in the reference group.  

 

 

Figure 2.14. Growth during phase 2 in open net-pens for Preline group and reference group in 

generation 2 from 12 March to 28 November 2016. 
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Estimated weight; Generation 3, September 2016 

In September 2016, fish from the Preline system was transferred to an open net-pen 

facility for grow-out phase (Figure 2.15). When relocated to the open net-pen, the Preline group 

(Buholmen) consisted of 154,940 fish, and the open net-pen reference group (Skorpo) consisted 

of 162,340 fish. The initial mean weight was 492.9 g (density 2.8 kg/m3) in the Preline group 

and 856 g (density 5.1 kg/m3) in the reference group. The final weight at the end of the 

experiment (26th of July, 329 days) was 4,626.2 g (density 23.8 kg/m3) in the Preline group and 

4,293.2 g (density 19 kg/m3) in the reference group. 

 

 

Figure 2.15. Growth during phase 2 in open net-pens for Preline group and reference group in 

generation 3 from 1 September 2016 to 26 July 2017. 
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Estimated weight; Generation 4, February 2017 

In February 2017, fish in the Preline group were transferred to an open net-pen facility 

for the grow-out phase (Rongøy). When relocated to open net-pen, the Preline group consisted 

of 92,156 fish, and the open net-pen reference group (Bogno) consisted of 161,321 fish. The 

initial mean weight was 450 g (density 1.5 kg/m3) in the Preline group and 369.4 g (density 2.1 

kg/m3) in the reference group (Figure 2.16). At the end of the experiment (6 November, 258 

days), the final mean weight was 4,800.8 g (density 13.6 kg/m3) in the Preline group and 3,991.3 

g (density 22.4 kg/m3) in the reference group. 

 

 

Figure 2.16. Growth during phase 2 in open net-pens for Preline group and reference group in 

generation 4 from 22 February to 6 November 2017. 
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Estimated weight; Generation 5, July 2017 

In July 2017, fish from the Preline system were relocated to an open net-pen facility for 

the grow-out phase (Figure 2.17). When transferred to the open net facility (Djupevika), the 

Preline group consisted of 216,277 fish and the reference group (Sauøya) in open sea cages 

consisted of 144,840 fish. The initial mean weight was 560.8 g (density 4.4 kg/m3) in the Preline 

group and 427.3 g (density 2.2 kg/m3) in the reference group. The final weight at the end of the 

experiment (11 May, 307 days) was 5,718.4 g (density 43.9 kg/m3) in the Preline group and 

3,305.5 g (density 13.5 kg/m3) in the reference group. 

 

 

Figure 2.17. Growth during phase 2 in open net-pens for Preline group and reference group in 

generation 5 from 5 July to 11 May 2018. 
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Estimated weight; Generation 6, February 2018  

Fish from the Preline group were transferred to an open net-pen facility in mid-February 

2018 (Figure 2.18). The Preline group (Hestabyneset) consisted of 146,713 fish, and the 

reference group (Bogno) consisted of 146,211 fish. The initial mean weight in the groups was 

284.1 g (density 1.5 kg/m3) in the Preline group and 366.2 g (density 1.9 kg/m3) in the reference 

group. At the end of the experiment (26 January, 351 days), the final mean weight was 4,704.9 

g (density 20.6 kg/m3) in the Preline group and 4,042.4 g (density 19.8 kg/m3) in the reference 

group. 

 

 

Figure 2.18. Growth during phase 2 in open net-pens for Preline group and reference group in 

generation 6 from 10 February to 26 January 2019. 
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Phase 2 - (Grow-Out): Feed Conversion Ratio, Mortality, Sea Lice Infestation and 

Growth performance   

A significant effect on season was observed for feed conversion ratio (p < 0.01, two-

way Anova). No difference was registered between the Preline and reference in FCR for the 

spring groups, while a lower FCR was observed in Preline during fall stockings (Figure 2.19 

A). For mortality (Figure 2.19 B), a significant interaction effect between season and system 

was observed (p < 0.05, two-way Anova). In the spring stockings, higher mortality was 

registered in Preline compared to the reference group. However, in the fall stockings, a lower 

mortality was observed in the Preline group. The registered sea lice infestation (Figure 2.19 C) 

in the Preline group was lower during both spring and fall (no significant difference) compared 

to reference. Registered final weight in the spring and fall stockings was significantly higher (p 

< 0.05, two-way Anova) for the Preline fish in comparison to reference fish (Figure 2. 19 D). 

In addition, a significantly higher weight gain (w2-w1) was observed in fish from Preline 

compared to the reference fish (p < 0.05, two-way Anova). Further, interpretation of specific 

growth rate (SGR) and thermal growth coefficient (TGC), showed no significant difference 

between seasons (spring and fall) and systems (Preline and open net-pen). 

Figure 2.19. Registered feed conversion (A), mortality (B), sea lice infestations (C) and final weight (D) 

in phase 2 for spring (left) and fall (right) generations, mean ± SE (n =3).  

A B 

C D 
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Biomass Estimation  

The biomass estimation in phase 1 and 2 was calculated by values (estimated final 

weight, observed mortality and fish n = 200,000) from empirical production data from both 

phases (post-smolt and grow-out) during spring and fall stockings (Table 2.6 and Table 2.7). 

Biomass estimation in phase 1: Post-smolt 

In a theoretical stocking scenario for phase 1 post-smolt, the estimated biological output 

varied during spring and fall stockings. The spring stockings shows a higher estimated gain in 

the reference group (125,374 kg) in comparison to the Preline groups (104,335 kg) due to a 

higher estimated final weight in the reference groups, despite a slightly higher mortality than 

the Preline group (Table 2.6). 

Moreover, fall stockings in phase 1 shows a higher biomass gain favoring the Preline 

group (91,733 kg) compared to the estimated biological performance in the reference group 

(85,342 kg). This due to a higher estimated final weight in the reference groups, despite a higher 

mortality in Preline group.  

 

Table 2.6: Estimation of biomass for spring and fall stockings in Phase 1. Preline group and 

reference group for phase 1 (post-smolt). Average performance results (final weight and 

mortality) during the fall and spring generations (n=3).  

Phase 1  Season    Fish stock    Mortality % Estimated 

Final weight 

per fish (kg) 

Estimated 

Biomass in the 

system (kg) 

Preline Spring 200,000 1.01  0.527  104,335  

Open net Spring 200,000 1.59  0.637  125,374  

Preline  Fall 200,000 5.43  0.485  91,733  

Open net Fall 200,000 2.13  0.436  85,342  
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Biomass estimation in phase 2: Grow-out 

 

In theoretical output of the grow-out period, the spring stockings shows an estimated 

biomass favoring the Preline group (796,764 kg) compared to the Reference group (693,787 

kg), explained by the higher final weight in this group (Preline), despite a higher mortality. The 

biomass gain was calculated to be approximately 100,000 kg higher in the Preline group. 

 In addition, in the fall stockings, the estimated biomass in Preline group (905,704 kg) 

is favored compared to the reference group (603,532 kg), as a combined effect of higher final 

weight and lower mortality in the Preline group in comparison to the reference group (Table 

2.7). The biomass gain for the fall stockings was calculated to be approximately 300,000 kg 

higher in the Preline groups.    

 

Table 2.7: Estimation of biomass for spring and fall stockings in phase 2. Preline group and 

reference group for phase 2 – grow-out in open net-pens (final weight and mortality).  

Phase 2  Season      Fish stock Mortality % Estimated 

Final weight 

per fish (kg) 

Estimated 

Biomass in the 

system (kg) 

Preline Spring 200,000 14.4  4.654  796,764 

Open net Spring 200,000 8.64  3.797  693,787  

Preline  Fall 200,000 7.05  4.872  905,704  

Open net Fall 200,000 25.12  4.030  603,532  
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Discussion of Methods: Chapter 2 – Benchmark Analyses of Six Generations Reared in 

Preline and Reference Groups 

All the generations in this study experienced similar rearing conditions during the 

freshwater stage and did originate from the same strain. This was of great importance when 

benchmarking biological performances in Atlantic salmon reared in two different systems 

(Preline and open sea cage). In a scientific context, full control of the experimental parameters 

is strived for, including control of environmental and physical parameters. Even though the 

environmental conditions and physical parameters cannot be controlled in this experiment, the 

results in this thesis represent field results as they would be in a real production situation and 

are constantly monitored.     

When conducting large-scale production experiments, the experimental design should 

include replicates to strengthen the interpretation. In cooperation with the industry, large-scale 

experimental studies have some limitations. To cope with these limitations and logistical 

challenges, the arrangement of this experiment was designed to meet and accommodate most 

of the critical parameters for an acceptable benchmark between the two rearing systems (Preline 

and open net-pen). Consequently, it was decided to run and interpret six generations of 

stockings from May 2015 to February 2018. This allowed for an investigation in seasonal 

variations between the rearing systems, where three generations were stocked during spring and 

three generations were stocked during fall. The experimental design allowed for a realistic 

interpretation of salmon produced according to Norwegian aquaculture. 

Variations in the measured parameters in the post-smolt phase were likely due to 

different rearing systems and conditions (Preline and open net-pen). As mentioned, the Preline 

system generates a relatively stable condition by pumping water from a fixed depth (~ 30 m). 

For the grow-out phase in open net-pens, the registered parameters varied as a result of different 

placement of the open net facilities. Further, the locations were exposed to surface layers with 
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more dynamic changes in oxygen and temperature. However, the water temperatures during the 

grow-out phase was similar for all the generations (see Table 2.4).  Moreover, fish in the open 

net system distribute themselves over various depths, making it difficult to determine exactly 

which parameter the fish is exposed to.  

In terms of growth in fish, temperature is regarded as one of the main factors that 

influence this process (Fry, 1971). In the post-smolt phase, a difference in final weight was 

expected due to dissimilarity in average temperature between the rearing systems during the 

season (Preline and open net). In this experiment, the weight estimations were generated by 

weight models using an FCR value of 1.1 as input in the Fishtalk calculation and TGC (Thermal 

Growth Coefficient) throughout the study. TGC summarizes fish growth by taking temperature 

into account, allowing for the comparison of fish influenced by different water temperatures 

(Iwama & Tautz, 2011; Thorarensen & Farrell, 2011). Recent studies of the 3rd generation in 

the Preline system showed that the estimations based on feed output (Fishtalk calculations, FCR 

= 1.1) correspond with the weight measurements that were conducted during the post-smolt 

phase (Moe et al., 2017). Thus, it should be expected that the weight estimations conducted 

during the grow-out phase are credible.  

The thermal growth coefficient (TGC) in this experiment was not calculated from 

individually tagged fish. Ideally, additional measurements should be included in this study 

because it is essential to evaluate the growth potential in the fish and strengthen the overall 

credibility of the weight estimations. Moreover, according to Jobling (2003), the TGC 

estimations should be interpreted with caution when the temperature exceeds the optimum of 

15–16°C. During the experimental period, the temperature exceeded 16°C in some of the 

generations during the grow-out phase. When temperatures are above the optimum, the growth 

rate starts to decrease; therefore, calculating TGC is most accurate between 7.5–12.5°C 

(Jobling, 2003). Except for generation 6 (> 40 days in reference and; >30 days in the Preline 
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group), the periods with a temperature above 16°C were relatively short within the generations 

in this study, suggesting that the TGC is most likely not affected. The SGR is affected by both 

temperature and body weight, where the specific growth rate increases with increasing sea 

temperature and decreases with increasing body weight (Talbot, 1993).  

Since this is a large-scale industrial experiment, limitations were met to run several 

replicates of the experimental groups. A large amount of empirical data (more than 2.1 million 

fish) has been collected (daily and weekly) over several years in this study. FCR and TGC are 

observational values calculated from data generated from Lerøy Vest AS. In addition, mortality 

and sea lice count were registered weekly, for each generation. Since there were six replicates 

for each parameter, one for each generation, a statistical analysis could be conducted for these 

values. For a relevant comparison of the parameters (TGC, initial weight, final weight, gain, 

FCR, mortality and sea lice count), the values were analyzed within spring and fall generations 

(n=3). Ideally, periodic samplings of weight and length should be conducted during the 

experimental period. Moreover, the number of measurements (n = 6) in this study suggest 

differences between the groups but is insufficient to determine trends. Consequently, more 

repetitions of stockings would help determine differences among the measured parameters in 

this research.   

  



 

 

83 
 

Discussion of Results 

Phase 1: Post-smolt 

 Growth 

Growth in fish is influenced by environment and is commonly used as an indicator of 

animal performance (Thorarensen & Farrell, 2011), where the temperature is considered one of 

the main factors that influences growth (Fry, 1971). Moreover, the rate of metabolic function 

is controlled by temperature, and will influence the efficiency of biomass gain from feeding 

(Handeland et al., 2008). Hence, the initial weight in phase 1 was significantly different between 

the spring and fall generations, as could be expected, since the 1+ smolts were bigger than the 

0+ smolts.  

The growth performance varied through the different seasons, and in the fall stockings, 

the overall growth performance observed was better in fish from the Preline system, apart from 

generation 6. During spring, the observed overall growth performance was higher in the 

reference group, except for in generation 5, where the growth performance was better in the 

Preline fish. These variations in growth performances are probably related to variations in smolt 

quality from the freshwater facility. The observations are based on empirical production data 

(n =1), and for this dataset, a statistical analysis could not be performed. Therefore, this is a 

descriptive analysis of the data. 

During phase 1, the average temperature varied between the Preline system and the 

reference group in open net-pens within the generations. This is likely affected by both the 

seasonal temperature conditions and bathymetric differences (Preline fish were exposed to 

water from 30 m of depth), whereas the fish in the reference group that were in open net-pens 

were exposed to surface water (Figure I.4). The temperature effect for growth is similar to the 

studies done for the 3rd Preline generation (also a part of this dataset), where fish from the 
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reference group (12.9°C on average) had a significantly higher final weight compared to the 

Preline fish (9.5°C on average) at the end of the post-smolt phase (Moe et al., 2017).  

To mitigate the different temperature conditions and regional differences between the 

rearing systems, a model incorporating growth rate per day that is dependent on the daily 

temperature was employed (TGC). For the TGC in phase 1, no significant difference was shown 

between the systems, indicating that the fish in phase 1 had a similar growth rate when the 

difference in temperature was incorporated in the calculation.  

FCR 

During phase 1, the Preline fish were forced to swim against a moderate current, causing 

mild aerobic training, in contrast to the fish in the reference group that was reared in open net-

pens. Raceway systems, like Preline, are designed to control water velocity, which is known to 

affect growth performance (Castro et al., 2011; Totland et al., 1987). Atlantic salmon exposed 

to long-term sustained swimming showed a 38% increase in growth with respect to the non-

exercised fish (Castro et al., 2011; Totland et al., 1987) Moreover, the feed conversion is also 

affected by exercise, and several studies have shown that exercise decreases the Feed 

Conversion Ratio (FCR) in different salmonid species (Christiansen et al., 1992; East & 

Magnan, 1987; Leon, 1986), which might also affect the FCR in the Preline and the reference 

groups. Growth and FCR should be seen in the context of the possible reduction of stressors, 

aggressive behavior, fewer interactions and hierarchy development between the fish swimming 

in Preline system (Adams et al., 1995; Christiansen et al., 1991; Jobling et al., 1993; Solstorm 

et al., 2016). In addition, fish density impacts the growth performance of post-smolt, and 

findings in Calabrese et al (2017) demonstrated the density should not exceed 75kg/m3. In the 

Preline system, the average stocking density was higher (M = initial density 10.3 kg/m3; M = 

final density 42 kg/m3) compared to the reference group (M = initial density 0.7 kg/m3; M = 

final density 3.3 kg/m3) in all generations. However, in this study, no significant difference was 
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registered for growth and FCR between the rearing systems in phase 1. The observed growth 

performance across the generations shows that temperature is the main factor influencing 

growth, independent of the rearing system. 

Mortality 

Mortality was measured daily based on individual inspections in each group by 

employees at Lerøy Vest AS. The registered mortality varied between the generations. 

Observations from the field have shown that mortality rate for post-smolt could be influenced 

by the transport from freshwater to seawater (Harald Sveier, Lerøy AS, 2020, pers. comm.). 

During the post-smolt phase, no overall difference in mortality was registered between the 

Preline group and the reference group. However, Totland et al. (1987) documented that fish 

exposed to an exercise regime tend to have an increased mortality rate during the first couple 

of days in the training regime. For phase 1, the rate of mortality in the Preline was especially 

affected by one particular generation (generation 6), were a higher mortality rate was observed 

during both post-smolt and grow-out phase. Whether this increased mortality was related to 

poor smolt quality, high density, the exercise achieved in the Preline system or other factors is 

difficult to determine.     

Sea lice 

In phase 1, infestations of sea lice were significantly lower in the Preline group 

compared to the reference group in open-net pens. This observation was expected since the 

water in the Preline system is controlled by a deep-water intake under the sea lice belt, in 

contrast to in open net-pens, where the fish are regularly exposed to the natural environment, 

in which sea lice is abundant at the open locations (Torrissen et al., 2013). The findings of 

reduced sea lice pressure on fish in the Preline are of great interest and suggest that new 

technology, such as S-CCS could contribute to reduce sea lice infestations on farmed post-smolt 

in sea.  
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Phase 2: Grow-out  

 Growth 

At the end of phase 2, harvest, fish from the Preline group showed a significantly higher 

weight gain compared to the reference group. In addition, fish from the Preline group had a 

significantly higher final weight compared to the reference group. These results correspond to 

studies done for salmonids raised in closed containment systems (CCS) and exposed to 

moderate water velocity, where an increase in growth as an effect of exercise has been 

documented (Nilsen et al., 2019). 

For the observed overall growth performance during fall, higher growth was observed 

in fish from the Preline system, except for generation 1. During spring, the observed overall 

growth performance was higher in fish originating from the Preline system. These growth 

performances are based on empirical production data, and for this dataset (n = 1), a statistical 

analysis could not be performed. 

The observed growth performance of fish in this study indicates that rearing of 

salmonids in an S-CCS prior to the grow-out phase in open sea cages could have a positive 

effect. Interestingly, the temperature conditions between the (Preline and reference) did not 

differ during the grow-out phase. For the TGC, no significant difference was shown between 

the groups, indicating that the fish in phase 2 had a similar growth rate when incorporating the 

TGC, which takes into account the optimal season temperature for fish growth (Iwama & Tautz, 

2011). For SGR in phase 2, no difference between the groups was found.  

Moreover, several studies have indicated that water velocities (> 0.40 BL/s) can have 

positive effects on growth through muscle fiber hypertrophy (Ibarz et al., 2010; Totland et al., 

1987). Moe et al. (2017) showed that fish in the 3rd Preline generation, at the end of the post-

smolt phase, had 2.44 times higher frequency of muscle fibers in the smallest interval group 

(0–20μm), compared to the reference group. Taken together, these observations suggest that 
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the higher growth in Preline fish during the grow-out phase could be explained by hypertrophy 

of the newly recruited muscle fibers.  

Mortality 

At the end of the grow-out phase, a significant lower mortality for the fall stockings was 

observed in the Preline group in comparison to the reference group. In the spring stockings, the 

reference group showed a lower mortality rate in comparison to the Preline group. The mortality 

observations in phase 2 were also influenced by the one Preline generation that cumulated a 

higher mortality rate during this experiment (Generation 6).  

The difference in mortality rate between Preline fish and reference might relate to the 

exercise achieved in the Preline system, where the exercised fish tend to be more capable of 

resisting environmental and physical challenges in the sea. These present findings are supported 

in the study by Moe et al. (2017).   

FCR 

In aquaculture, feed conversion ratio (FCR) is an important measurement that has an 

economic impact. In the grow-out phase, the FCR was significantly different during seasons 

between the Preline fish and reference fish. The FCR can be described as the amount of mass 

gained by the fish relative to the amount of feed consumed (Jackson, 2010). The FCR is affected 

by exercise, and several studies have shown that exercise decreases the FCR in different 

salmonid species (Christiansen et al., 1992; East & Magnan, 1987; Leon, 1986). Studies have 

also shown that weight gain is achieved with less feed when the appetite is stimulated as an 

effect of training (Davison, 1989). In open sea cages, freely swimming fish tend to form 

dominant hierarchies and show increased aggression; this can again lead to less food available 

for subordinate fish (Adams et al., 1995; Brännäs, 2009). In phase 2, during the fall, the FCR 

was lower in the Preline group in comparison to the reference group. The decrease in FCR could 

be related to a better appetite in the robust and exercised fish from Preline. 
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Sea lice 

After a free-swimming larvae period, Sea lice (L. salmonis) settle, attach, and feed on 

its fish host. The sea lice cause stress and physical damage to the fish, adversely affecting 

growth and performance. Consequently, severe infestations of sea lice can lead to secondary 

infections and mass mortalities (Costello, 2006; Pike & Wadsworth, 1999; Torrissen et al., 

2013). At the end of phase 2, no statistical differences in sea lice infestations was shown 

between fish from the Preline group and the reference group. However, the trend points to a 

lower infestation level in fish reared in Preline. In addition, according to observations from the 

field the need for sea lice treatments in Preline groups are reduced in comparison to groups in 

open net-pens (Harald Sveier, Lerøy AS, 2020, pers. comm.). This observation could be 

influenced by many factors, where one aspect could be the skin of the fish. The skin and 

associated mucus layer of Atlantic salmon constitutes its first line of defense against the 

environment. The skin of the fish protects both as a physical barrier and as an active and 

protective layer with immunological capacities that interacts with the surrounding 

environments (Sveen et al., 2016). In addition, the skin provides protection against external 

agents and has a high capacity for regeneration and healing (Richardson et al., 2016). Recent 

studies of the skin barrier, including epidermis and dermis, showed that thickness and mucus 

cell numbers increased in line with growth after seawater transfer in Atlantic salmon (Karlsen 

et al., 2018). Accounting for these results and observations, it could be suggested that the fish 

reared in the Preline system as post-smolt before the grow-out phase are more robust in terms 

of sea lice infestations. The reduced sea lice infestations could also help explain the lower 

mortality rate observed for Preline fish.   
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Estimated Biomass  

 Phase 1: Post-smolt 

The estimated biomass in phase 1 was calculated based on the average performance in 

survivors at the end of the post-smolt phase (3–4 months) in fish reared in the Preline system 

and the reference group for the fall and spring stockings (n = 3). In the spring stockings, the 

estimated biomass output favored the open sea cage strategy with a higher final weight per fish 

giving a higher total biomass gain of 17 %, despite the higher mortality compared to the Preline 

group in phase 1.  

 The fall stockings showed an estimated biomass favoring the Preline strategy due to the 

higher estimated final weight per fish, with 7 % higher gain compared to reference, despite the 

higher mortality in Preline system during the fall stockings. This estimation should be seen in 

context to the Preline generation that showed very high mortality rate during the experimental 

period.  

Moreover, these estimated differences in growth among the groups through spring and 

fall stockings in phase 1 are probably related to the “opposite season” temperature conditions 

generated by the water inlet (~30 m of depth) in the Preline system, since the growth is highly 

affected by temperature (Fry, 1971). 

Phase 2: Grow-out 

The estimated biomass output of the adult salmon at the end of phase 2 (grow-out) favors 

the Preline strategy in both spring and fall stockings. For the spring stockings, the mortality rate 

was higher in fish from the Preline system in comparison to reference groups. Still, the bigger 

final weight per fish reared in the Preline system (>600 g), gave 12% (100,000 kg) higher 

estimated biomass gain compared to the reference group. 

For the fall estimations, fish reared in the Preline system prior to grow-out phase showed 

a higher final weight (>800 g) per fish compared to reference group. In combination with a 
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lower mortality rate, the fall performance in Preline fish suggests an estimated increase in 

biomass of 40% (approximately 300,000 kg), in comparison to the reference group. 

In order to carry out these theoretical estimations, assumptions such as equal stocking 

density and initial weight were set for a realistic comparison. During phase 1, the estimated 

final weight per fish was higher in the reference group in the fall stockings and was quite similar 

for the spring stocking. Nevertheless, after undergoing the grow-out phase in fall and spring, 

the Preline fish showed a dramatically higher estimated final weight per fish in comparison to 

fish reared in open sea cages through both phases. As already discussed, this could be related 

to the hyperplasia fish achieved from exercise in the Preline system, documented in the study 

of Moe et al. (2017).   

From an economical point of view, these estimations show that implementation of the 

S-CCS strategy could have a beneficial economic impact, by potentially achieving more 

produced biomass and increased welfare for the fish, due to lower mortality and stable growth 

performance in the grow-out phase. Based on these estimated biomasses, an economic analysis 

of implementing S-CCS in a conventional production regime for Atlantic salmon is depicted in 

appendix IV.  
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Conclusion 

This benchmark study determined differences in phase 1- post smolt and phase 2 – grow-

out of Atlantic salmon. The main finding for phase 1 was that fish reared in the Preline system 

had lower sea lice infestations. After having undergone the grow-out phase, fish from the 

Preline system had a higher final weight, higher weight gain and showed a lower mortality than 

the reference group in the fall stockings. Accounting for these findings, despite the low number 

of measurements in this experiment, assessment of S-CCS technology for rearing of post-smolt 

show a positive impact in production of Atlantic salmon.       

 Hypotheses for phase 1 (post-smolt):  

• H01a: Rearing Atlantic salmon post-smolt in Preline system has no significant 

effect on growth compared to the reference group, is accepted.  

• H02a: Rearing Atlantic salmon post-smolt in Preline system has no significant 

effect on feed conversion ratio compared to the reference group, is accepted.  

• H03a: Rearing Atlantic salmon post-smolt in Preline system has no significant 

effect on mortality compared to the reference group, is accepted.   

• H04a: Rearing Atlantic salmon post-smolt in Preline system has no significant 

effect on sea lice infestations compared to the reference group, is rejected. 

Significantly lower infestations were observed in Preline system, so H14a is 

accepted: Rearing Atlantic salmon post-smolt in Preline system has a significant 

effect on sea lice infestations compared to the reference group    
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Hypotheses for phase 2 (grow-out in open sea cages): 

• H01b: Rearing Atlantic salmon post-smolt in Preline system before transfer to 

open sea cages for a grow-out phase has no significant effect on growth during 

the grow-out phase compared to the reference group, is rejected. Due to the 

findings of significantly higher weight gain and final weight in Preline fish, H11b 

is accepted: Rearing Atlantic salmon post-smolt in Preline system before 

transfer to open sea cages for a grow-out phase has a significant effect on growth 

during the grow-out phase compared to the reference group. 

• H02b: Rearing Atlantic salmon post-smolt in Preline system before transfer to 

open sea cages for a grow-out phase has no significant effect on feed conversion 

ratio is rejected. Results from feed conversion shows a significantly effect 

between the groups, where a better conversion is observed in Preline, thus, H12b 

is accepted: Rearing Atlantic salmon post-smolt in Preline system before 

transfer to open sea cages for a grow-out phase has a significant effect on feed 

conversion ratio. 

• H03b: Rearing Atlantic salmon post-smolt in Preline system before transfer to 

open sea cages for a grow-out phase has no significant effect on mortality, is 

rejected. Since significant difference was found for interaction between season 

and rearing method during phase 2, therefore, H13b is accepted: Rearing 

Atlantic salmon post-smolt in Preline system before transfer to open sea cages 

for a grow-out phase has a significant effect on mortality. 

• H04b: Rearing Atlantic salmon post-smolt in Preline system before transfer to 

open sea cages for a grow-out phase has no significant effect on sea lice 

infestations, is accepted. 
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Synoptic Discussion: Acute challenge test and Benchmark analysis 

As presented earlier, the salmon industry is facing several challenges, where sea lice 

infestations, escapees of farmed fish, diseases, pollution and environmental impact represents 

some of the major problems for a prospective growth (Oppedal et al., 2011; Torrissen et al., 

2013; Glover et al., 2012; Rosten et al., 2011). Moreover, in the commercial production line, 

the post-smolt stage has shown to be a sensitive and critical phase for survival, and a high rate 

of the fish never reach marked size (Roberts & Pearson, 2005; Bleie & Skrudland, 2014; Holtby 

et al., 1990). The predominant production of Atlantic salmon occurs in open sea cages. 

Application of S-CCS as a strategy to reduce the period fish are exposed to open sea requires 

knowledge on biological requirements of post-smolt in these systems. The motivation of this 

study was to determine if growth performance and welfare of post-smolt are affected by rearing 

methods (S-CCS and open sea cage) prior to grow-out phase. The results from chapter (1); 

Acute challenge test and chapter (2); Benchmark analysis provide basic insight of the effect on 

rearing post-smolt in both S-CCS and open sea cages.   

Acute challenge test: S-CCS versus open sea cages 

In aquaculture, the fish are confined and are thus not able to escape from stressors; 

farmed fish could be exposed to several different stressors, such as suboptimal water quality, 

repeated handling, transport, and crowding. The effects of many of these challenges on fish 

have been investigated in various studies (Di Marco et al., 2008; Gorissen et al., 2012; Pottinger, 

2010; Remen et al., 2012). In addition, the acute stress response of fish has been widely 

reviewed (Barton, 2002; Wendelaar Bonga, 1997). However, knowledge of long-term stress on 

salmonids remains limited. It is assumed that fish reared in open sea cages could be exposed to 

stressors that might potentially lead to a condition of chronic stress.  
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The ACT experiments in chapter 1 investigated the stress response in post-smolt after 

undergoing an acute stress challenge in two different environments (S-CCS and open sea cage). 

Exposure to a low allostatic load (eustress) may have a positive impact on animal 

performance (Kupriyanov & Zhdanov, 2014), in contrast to exposure to a high allostatic load 

(long-term or repeated exposure for a stressor), which results in a chronic stress condition. In 

this state, the alarm signals and initial stress response could be minimal as a result of an 

allostatic overload (distress) on the animal (McEwen & Seeman, 1999).  

Fish reared in the S-CCS (Preline and Neptune) showed a stronger response in cortisol 

release compared to their reference group after ACT. This observation is similar to the findings 

in Korte et al. (2007), where fish in a state of good welfare increase their cortisol levels when 

reacting to an acute challenge, according to the concept of allostasis. Further, the observations 

a lower cortisol response in the reference groups in open net pens correspond to studies done 

on Atlantic salmon exposed to chronic stress followed by an additional stressor which resulted 

in suppressed cortisol response (Grassie et al., 2013; Madaro et al., 2016). These observations 

also correlate to the general downregulation of the HPI axis, a regulation that is common in fish 

adapting to chronic stress (Barton, 2002; Barton et al., 1986; Vijayan & Leatherland, 1990). 

As opposed to open net-pens, the S-CCS allow for control of the water current within 

the system. Active species, such as salmonids, can be made to swim facing a constant current. 

This swimming behavior tends to create schools where the interaction between the fish is 

reduced, making fewer dominant hierarchies. This contrasts with free-swimming fish in still 

water, which tend to form dominant hierarchies and show increased aggression (Adams et al., 

1995; Winberg et al., 1991). The schooling behavior generated by the S-CCS might relate to 

the observed stress responses and less individual variability in the measurements from the S-

CCS groups in chapter 1. The overall observation in measured parameters showed that the fish 
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reared in the S-CCS had a more homogeneous stress response (cortisol, plasmatic ions, lactic 

acid) in comparison to fish in the reference group. 

The results from chapter 1 indicate that fish reared in open sea cages are more prone to 

reaching an allostatic overload as a result of repeated or long-term exposure to different 

stressors in the sea. This contrasts to fish reared in S-CCS, where a more controlled and stable 

environment is achieved, and therefore the fish show a stronger ability to handle an acute 

stressor. In addition, the low baseline response observed in the S-CCS groups imply that the 

fish experience a good state of welfare in these systems.  

Benchmark analysis: six generations of stocking 

The combined results from chapter 1 indicate that rearing post-smolt in S-CCS could 

influence growth performance during the grow-out phase, which lead to the benchmark analysis 

conducted in chapter 2. The aim of the analysis was to investigate and benchmark biological 

performance in fish reared in the Preline system (S-CCS), and fish reared in a traditional open 

cage system. 

In phase 1 post-smolt, the continuous current forced the fish to swim and exercise in a 

sheltered and protected system. The findings from phase 1 show that growth is probably more 

influenced by temperature rather than the rearing system. The lower infestations of sea lice on 

Preline fish is an observation of great importance. For the wild salmon this finding shows that 

farmed fish in S-CCS imposes less impact on the surrounding environment in term of sea lice 

pressure. From phase 2 grow-out, the findings suggest that exercise and stable water conditions 

during post-smolt phase has a positive impact on the grow-out phase. The significantly lower 

mortality in fall stockings and less sea lice treatments observed on Preline fish indicate that the 

fish are more robust. Moreover, with the higher final weight and weight gain in phase 2, the 

findings suggest a trend favoring the Preline strategy. Especially accounting for the estimated 
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biomass giving a higher gain in Preline fish for spring (100,000 kg) and fall (300,000 kg) 

stockings.    

Today, some of the S-CCS technologies in the industry are slowly emerging from proto-

types to proper production facilities for rearing of post-smolts. The Preline system for instance 

was one of the first deployed and has been in operation for almost five years, during which the 

farmers have gained important experience. The implementation of S-CCS in conventional 

production cycle for salmon are affected of many factors, such as license fee for operating, 

political regulations, environmental impact, fish welfare and economically factors. To 

determine if S-CCS should be fully integrated in conventional salmon production, collaboration 

between researches, politicians and decision makers are important.   

In summary, the findings in the acute stress test and benchmark study shows promising 

indications favoring S-CCS technology compared to full time exposure in open sea. It could be 

speculated that use of S-CCS is favorable during tough conditions and winter months, and that 

open sea cages might be preferred during calmer summer months. To determine an optimal use 

and strategy of floating semi closed containment systems, further research is needed in order to 

achieve a broader understanding and knowledge of producing post-smolt in S-CCS.     
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Future perspectives  

Further studies are needed to understand the impact of implementing S-CCS in the post-

smolt phase for Atlantic salmon, regarding seasonal and environmental differences in the 

rearing systems. Preferably, the samplings should follow in time series, allowing for a deeper 

understanding of the stress response development in the fish post ACT treatment. The 

samplings in this study were conducted during spring (March and April); ideally, seasonally 

samplings should also be included. All the fish in such an experiment should originate from the 

same strain and be of similar size and weight. Moreover, greater knowledge of normal 

biochemical parameters in fish reared in unstressed and chronic stressed conditions is essential 

to compare the effect of S-CCS compared to open net pens. At present, knowledge of the normal 

concentration range in the measured parameters (cortisol, chloride, sodium, calcium, glucose, 

magnesium, and lactic acid) is scarce for Atlantic salmon cultured in Norway. To mitigate the 

lack of this knowledge, fish (n = 30) was analyzed to account for individual variability and for 

a broader understanding in this study. 

 To strengthen the statistical power and general knowledge on how fish reared in S-CCS 

perform in open sea cages, additional measurements are needed to support the results in this 

study. Optimal swimming velocity in S-CCS and the effect of hyperplasia are areas that needs 

to be more investigated. In addition, the observations of less sea lice infestation on the Preline 

fish in open net pens rises intriguing questions that should be followed up. Moreover, 

environmental impact on the surroundings, sustainable use of the sludge from the S-CCS and 

optimization of stocking strategy are areas of interest for future research.    
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Appendix I – Additional results chapter 1 

 

 

Appendix I include additional results that were not included in chapter 1. Significant 

differences are presented in the graphs. Since the additional results are not part of the main 

thesis, the statistical results are not included in Appendix II. The analysis of the additional 

plasma samples was conducted using the ABX Pentra as described in chapter 1.  

 

 

 

 

Experiment 1 – Preline system; additional results   

Plasma Lactate Dehydrogenase concentration  

 

Appendix Figure 1: Plasma lactate dehydrogenase concentration in Preline S-CCS. Baseline and the Acute Test 

Challenge (ACT) treatment. Comparative reference group are also included. The lines represent the medians, and 

the dots represent outliers. Significance levels are p<0.05 (*), p<0.01(**), p<0.001(***), p<0.0001(****), ns = no 

significance.  
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Plasma Phosphorus concentration  

 

Appendix figure 2: Plasma phosphorus concentration in Preline S-CCS. Baseline and the Acute Test Challenge 

(ACT) treatment. Comparative reference group are also included. The lines represent the medians, and the dots 

represent outliers. Significance levels are p<0.05 (*), p<0.01(**), p<0.001(***), p<0.0001(****), ns = no 

significance.  

 

Plasma Potassium concentration  

 

Appendix figure 3: Plasma potassium concentration in Preline S-CCS. Baseline and the Acute Test Challenge 

(ACT) treatment. Comparative reference group are also included. The lines represent the medians, and the dots 

represent outliers. Significance levels are p<0.05 (*), p<0.01(**), p<0.001(***), p<0.0001(****), ns = no 

significance.  
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Plasma Triglycerides concentration  

 

Appendix figure 4: Plasma triglycerides concentration in Preline S-CCS. Baseline and the Acute Test Challenge 

(ACT) treatment. Comparative reference group are also included. The lines represent the medians, and the dots 

represent outliers. Significance levels are p<0.05 (*), p<0.01(**), p<0.001(***), p<0.0001(****), ns = no 

significance.  

 

Plasma Urea concentration  

 

Appendix figure 5: Plasma urea concentration in Preline S-CCS. Baseline and the Acute Test Challenge (ACT) 

treatment. Comparative reference group are also included. The lines represent the medians, and the dots represent 

outliers. Significance levels are p<0.05 (*), p<0.01(**), p<0.001(***), p<0.0001(****), ns = no significance. 
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Experiment 2 – Neptune system; additional results   

Plasma Lactate Dehydrogenase concentration  

 

Appendix figure 6: Plasma lactate dehydrogenase concentration in Neptune S-CCS. Baseline and the Acute Test 

Challenge (ACT) treatment. Comparative reference group are also included. The lines represent the medians, and 

the dots represent outliers. Significance levels are p<0.05 (*), p<0.01(**), p<0.001(***), p<0.0001(****), ns = no 

significance.  

 

Plasma Phosphorus concentration  

 

Appendix figure 7: Plasma phosphorus concentration in Neptune S-CCS. Baseline and the Acute Test Challenge 

(ACT) treatment. Comparative reference group are also included. The lines represent the medians, and the dots 

represent outliers. Significance levels are p<0.05 (*), p<0.01(**), p<0.001(***), p<0.0001(****), ns = no 

significance.  
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Plasma Potassium concentration  

 

Appendix figure 8: Plasma potassium concentration in Neptune S-CCS. Baseline and the Acute Test Challenge 

(ACT) treatment. Comparative reference group are also included. The lines represent the medians, and the dots 

represent outliers. Significance levels are p<0.05 (*), p<0.01(**), p<0.001(***), p<0.0001(****), ns = no 

significance.  

 

Plasma Triglycerides concentration  

                 

Appendix figure 9: Plasma triglycerides concentration in Neptune S-CCS. Baseline and the Acute Test Challenge 

(ACT) treatment. Comparative reference group are also included. The lines represent the medians, and the dots 

represent outliers. Significance levels are p<0.05 (*), p<0.01(**), p<0.001(***), p<0.0001(****), ns = no 

significance. 
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Plasma Urea concentration  

 

Appendix figure 10: Plasma urea concentration in Preline S-CCS. Baseline and the Acute Test Challenge (ACT) 

treatment. Comparative reference group are also included. The lines represent the medians, and the dots represent 

outliers. Significance levels are p<0.05 (*), p<0.01(**), p<0.001(***), p<0.0001(****), ns = no significance 
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Appendix II – Statistical Analyses Chapter 1 

Experiment 1 – Preline system 

Objective – ACT treatment in fish from Preline system and reference 

 

Sampling - Cortisol  

Appendix table 1: Test results from a nonparametric Kruskal-Wallis one-way ANOVA. Significant levels are 

indicated with asterisks, p < 0.05: (*); p < 0.01: (**); p < 0.001: (***); p < 0.0001 (****). 

 K-W chi-squared DF p-value 

Treatment 76 3 < 2.2e-16 **** 

 

Appendix table 2: Test results from a Mann-Whitney-Wilcoxon post-hoc test. See Appendix table 1 for additional 

info. 

Comparison w-value p-value 

ACT – Baseline 810 2.2e-16 **** 

ACT – Ref ACT 787 8.214e-13 **** 

Baseline – Ref Baseline  

Ref ACT – Ref Baseline                                     

128 

417 

3.58e-05 **** 

0.2461 

 

Sampling - Sodium   

Appendix table 3: Test results from a nonparametric Kruskal-Wallis one-way ANOVA.  

 K-W chi-squared DF p-value 

Treatment 56.416 3 3.425e-12 ****  
 

Appendix table 4: Test results from a Mann-Whitney-Wilcoxon post-hoc test. See Appendix table 1 for additional 

info. 

Comparison w-value p-value 

ACT – Baseline 864 1.015e-15 **** 

ACT – Ref ACT 405 0.657 

Baseline – Ref Baseline  

Ref ACT – Ref Baseline                                     

215 

678 

0.00037 *** 

0.00057 *** 

 

 Sampling - Calcium  

Appendix table 5: Test results from a nonparametric Kruskal-Wallis one-way ANOVA. See Appendix table 1 for 

additional info. 

 K-W chi-squared DF p-value 

Treatment 57.324 3 2.191e-12 **** 

 

Appendix table 6: Test results from a Mann-Whitney-Wilcoxon post-hoc test. See Appendix table 1 for additional 

info. 

Comparison w-value p-value 

ACT – Baseline 900 2.984e-11 **** 

ACT – Ref ACT 455.5 0.9411 

Baseline – Ref Baseline  

Ref ACT – Ref Baseline                                     

274 

677.5 

0.0094 ** 

0.0007 *** 
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Sampling - Magnesium   

Appendix table 7: Test results from a nonparametric Kruskal-Wallis one-way ANOVA.  

 K-W chi-squared DF p-value 

Treatment 50.743 3 5.548e-11 ****  

 

Appendix table 8: Test results from a Mann-Whitney-Wilcoxon post-hoc test. See Appendix table 1 for additional 

info. 

Comparison w-value p-value 

ACT – Baseline 840 6.552e-11 **** 

ACT – Ref ACT 402 0.7853 

Baseline – Ref Baseline  

Ref ACT – Ref Baseline                                     

307.5 

661.5 

0.0538  

0.0006 ***  

 

Sampling - Lactic Acid   

Appendix table 9: Test results from a nonparametric Kruskal-Wallis one-way ANOVA. See Appendix table 1 for 

additional info. 

 K-W chi-squared DF p-value 

Treatment 40.831 3 7.101e-09 **** 

 

Appendix table 10: Test results from a Mann-Whitney-Wilcoxon post-hoc test. See Appendix table 1 for additional 

info. 

Comparison w-value p-value 

ACT – Baseline 557 2.2e-16 **** 

ACT – Ref ACT 557 0.1159 

Baseline – Ref Baseline  

Ref ACT – Ref Baseline                                     

345.5 

585 

0.1241  

0.0462 * 

 

 Sampling - Glucose 

Appendix table 11: Test results from a one-way ANOVA. See Appendix table 1 for additional info.   
DF F-value p-value 

Sampling 
 

3 4.4  0.0054 ** 

 

Appendix table 12: Test results from a Tukey HSD post-hoc test. See Appendix table 1 for additional info. 

Comparison estimate Std. error t-value p-value 

ACT – Baseline -0.048664 0.037984 -1.281 0.5767 

ACT – Ref ACT -0.067952 0.037983 -1.789 0.2839 

Baseline – Ref Baseline  

Ref ACT – Ref Baseline                                     

 0.116477 

-0.000139 

0.038310 

0.038310 

 3.040 

-0.004 

0.0153 * 

1.0000 
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Sampling - Chloride   

Appendix table 13: Test results from a one-way ANOVA. See Appendix table 1 for additional info.   
DF F-value p-value 

Sampling 
 

3 29.172 3.968e-14 *** 

 

Appendix table 14: Test results from a Tukey HSD post-hoc test. See Appendix table 1 for additional info. 

Comparison estimate Std. error t-value p-value 

ACT – Baseline -20.973 2.623 -7.997 <0.001 *** 

ACT – Ref ACT -1.850 2.623 -0.706 0.8948 

Baseline – Ref Baseline  

Ref ACT – Ref Baseline                                     

 6.907 

-12.217 

2.623 

2.623 

 2.634 

-4.658 

0.0464 * 

<0.001 *** 

 

  

Experiment 2 – Neptune system 

Objective – ACT treatment in fish from Neptune and reference group. 

Sampling – Cortisol    

Appendix table 15: Test results from a nonparametric Kruskal-Wallis one-way ANOVA.  

 K-W chi-squared DF p-value 

Treatment 64.9 3 5.248e-14 **** 

 

Appendix table 16: Test results from a Mann-Whitney-Wilcoxon post-hoc test. See Appendix table 1 for additional 

info. 

Comparison w-value p-value 

ACT – Baseline 780 3.009e-16 *** 

ACT – Ref ACT 662 0.001443 ** 

Baseline – Ref Baseline  

Ref ACT – Ref Baseline                                     

203 

522 

0.0552 

0.001192 ** 

 

 Sampling – Chloride    

Appendix table 17: Test results from a one-way ANOVA. See Appendix table 1 for additional info.   
DF F-value p-value 

Sampling 
 

3 14.933 2.837e-08 *** 

 

Appendix table 18: Test results from a Tukey HSD post-hoc test. See Appendix table 1 for additional info. 

Comparison estimate Std. error t-value p-value 

ACT – Baseline -19.387 3.908 -4.961 < 0.001 *** 

ACT – Ref ACT  4.666 3.942 1.184 0.63830 

Baseline – Ref Baseline  

Ref ACT – Ref Baseline                                     

 9.223 

-14.829 

3.908 

3.942 

2.360 

-3.762 

0.09076 

0.00155 ** 
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Sampling - Sodium   

Appendix table 19: Test results from a one-way ANOVA. See Appendix table 1 for additional info.   
DF F-value p-value 

Sampling 
 

3 46 2.2e-16 *** 

 

Appendix table 20: Test results from a Tukey HSD post-hoc test. See Appendix table 1 for additional info. 

Comparison estimate Std. error t-value p-value 

ACT – Baseline -30.900 3.147 -9.818 < 1e-05 *** 

ACT – Ref ACT  1.558 3.264 0.477 0.964 

Baseline – Ref Baseline  

Ref ACT – Ref Baseline                                     

 14.880 

-17.578 

3.120 

3.238 

4.769 

5.428 

2.7e-05 *** 

< 1e-05 *** 

 

Sampling - Calcium   

Appendix table 21: Test results from a one-way ANOVA. See Appendix table 1 for additional info.   
DF F-value p-value 

Sampling 
 

3 82.606 < 2.2e-16 *** 

 

Appendix table 22: Test results from a Tukey HSD post-hoc test. See Appendix table 1 for additional info. 

Comparison estimate Std. error t-value p-value 

ACT – Baseline -0.96467 0.07614 -12.669 <0.001 *** 

ACT – Ref ACT -0.04033 0.07614 -0.530   0.9517     

Baseline – Ref Baseline  

Ref ACT – Ref Baseline                                     

 0.22500 

-0.69933 

0.07614 

0.07614 

 2.955 

-9.185 

  0.0191 * 

<0.001 *** 

 

Sampling - Glucose  

Appendix table 23: Test results from a one-way ANOVA. See Appendix table 1 for additional info.   
DF F-value p-value 

Sampling 
 

3 17.064 3.02e-09 *** 

 

Appendix table 24: Test results from a Tukey HSD post-hoc test. See Appendix table 1 for additional info. 

Comparison estimate Std. error t-value p-value 

ACT – Baseline -0.4757 0.1667 -2.854   0.0262 * 

ACT – Ref ACT  0.6970 0.1667  4.182 <0.001 *** 

Baseline – Ref Baseline  

Ref ACT – Ref Baseline                                     

 0.6923 

-0.4803 

0.1667 

0.1667 

 4.154 

-2.882 

<0.001 *** 

  0.0237 * 

 

Sampling - Magnesium   

Appendix table 25: Test results from a one-way ANOVA. See Appendix table 1 for additional info.   
DF F-value p-value 

Sampling 
 

3 142.14 < 2.2e-16 *** 

 

Appendix table 26: Test results from a Tukey HSD post-hoc test. See Appendix table 1 for additional info. 

Comparison estimate Std. error t-value  p-value 

ACT – Baseline -1.01278 0.07114 -14.236 < 0.001 *** 

ACT – Ref ACT  0.23518 0.07114    3.306  0.00678 ** 

Baseline – Ref Baseline  

Ref ACT – Ref Baseline                                     

 0.25513 

-0.99283 

0.07054 

0.07054 

   3.617 

-14.075 

 0.00237 ** 

< 0.001 *** 
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Sampling – Lactic Acid    

Appendix table 27: Test results from a one-way ANOVA. See Appendix table 1 for additional info.   
DF F-value p-value 

Sampling 
 

3 238.81 < 2.2e-16 *** 

 

Appendix table 28: Test results from a Tukey HSD post-hoc test. See Appendix table 1 for additional info. 

Comparison estimate Std. error t-value p-value 

ACT – Baseline -1.34002 0.05621 -23.841 <1e-04 *** 

ACT – Ref ACT -0.11449 0.05621 -2.037    0.181 

Baseline – Ref Baseline  

Ref ACT – Ref Baseline                                     

 0.66170 

-0.56383  

0.05621 

0.05621 

11.773 

-10.032 

<1e-04 *** 

<1e-04 *** 

 

 

Appendix III – Statistical Analyses from chapter 2 

Appendix table 29: Summary of Statistical Analysis of Empirical Production Data in Phase 1 and Phase 

2 for The Initial Weight(W1), Final Weight(W2), Gain (W2 -W1), Specific Growth Rate (SGR), Thermal 

Growth Coefficient (TGC), Mortality, Feed Conversion, and Sea Lice Infestations (n = 6, PL = Preline 

System, Ref = reference).  
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Phase 1 – Post-smolt phase   

Appendix table 30: Test results from a two-way ANOVA lm-model. See Appendix table 1 for additional info.   
DF F-value p-value 

System 

Season 

System: Season 

 
1 

1 

1 

0.0817 

1.0806 

0.6280 

0.7822 

0.3290 

0.4506 

 

Appendix table 31: Test results from a Tukey HSD post-hoc test. See Appendix table 1 for additional info. 

Comparison Diff Lwr Upr p-value 

PL fall – Cage fall 51.26 -407.06 509.59 0.983 

Cage Spring – Cage fall 

PL Spring – Cage fall 

Cage Spring – PL Fall 

PL Spring – PL fall 

PL Spring – Cage Spring  

185.4 

76.26 

134.13 

25.00 

-109.13 

-272.92 

-382.06 

-324.19 

-433.32 

-567.56 

643.72 

534.59 

592.46 

483.32 

349.19 

0.590 

0.948 

0.786 

0.997 

0.868  
  

   

 

 Initial weight (w1)  

Appendix table 32: Test results from a two-way ANOVA lm-model. See Appendix table 1 for additional info.   
DF F-value p-value 

System 

Season 

System: Season 

 
1 

1 

1 

0.0838 

5.4199 

0.0047  

0.779 

0.048 * 

0.947 

 

Appendix table 33: Test results from a Tukey HSD post-hoc test. See Appendix table 1 for additional info. 

Comparison Diff Lwr Upr p-value 

PL fall – Cage fall -2.533333    -34.59846     29.53179          0.9938 

Cage Spring – Cage fall 

PL Spring – Cage fall 

Cage Spring – PL Fall 

PL Spring – PL fall 

PL Spring – Cage Spring  

16.000000  

14.433333 

18.533333  

16.966667 

-1.566667                      

-16.06512  

-17.63179  

-13.53179 

-15.09846   

-33.63179                        

48.06512 

46.49846   

50.59846 

49.03179 

30.49846                                    

0.4309 

0.5106 

0.3190 

0.3855 

0.9985 

 

SGR (Specific Growth rate)  

Appendix table 34: Test results from a two-way ANOVA lm-model. See Appendix table 1 for additional info.   
DF F-value p-value 

System 

Season 

System: Season 

 
1 

1 

1 

0.0009                    

4.9431    

0.2152    

0.9767 

0.0568 

0.6550 

 

Appendix table 35: Test results from a Tukey HSD post-hoc test. See Appendix table 1 for additional info. 

Comparison   Diff     Lwr   Upr p-value 

PL fall – Cage fall 0.06282596             -0.5930671          0.7187190              0.9892 

Cage Spring – Cage fall 

PL Spring – Cage fall 

Cage Spring – PL Fall 

PL Spring – PL fall 

PL Spring – Cage Spring 

0.38918028 

0.31763436 

0.32635432 

0.25480840  

-0.0715459                

 -0.2667127  

 -0.3382587 

-0.3295387 

-0.4010846 

-0.7274389                                    

1.0450733 

0.9735274 

0.9822473 

0.9107014 

0.5843471                                                      

0.2999 

0.4542 

0.4331 

0.6189 

0.9843 
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TGC (Thermal Growth Coefficient)  

Appendix table 36: Test results from a two-way ANOVA lm-model. See Appendix table 1 for additional info.   
DF F-value p-value 

System 

Season 

System: Season 

 
1 

1 

1 

0.0062                    

0.4938    

1.5560   

0.9391 

0.5022 

0.2475 

 

Appendix table 37: Test results from a Tukey HSD post-hoc test. See Appendix table 1 for additional info. 

Comparison   Diff     Lwr   Upr p-value 

PL fall – Cage fall -0.3457917       -1.6859585           0.994375              0.8407 

Cage Spring – Cage fall 

PL Spring – Cage fall 

Cage Spring – PL Fall 

PL Spring – PL fall 

PL Spring – Cage Spring 

-0.1611908  

0.2312744       

0.1846009  

0.5770661 

0.3924652                            

-1.5013576 

-1.1088923 

-1.1555658  

-0.7631006  

-0.9477015                                                

1.178976   

1.571441 

1.524768  

1.917233  

1.732632                                       

0.9792 

0.9432 

0.9695 

0.5443 

0.7863  
 

 Lice infestations   

Appendix table 38: Test results from a two-way ANOVA lm-model. See Appendix table 1 for additional info.   
DF F-value p-value 

System 

Season 

System: Season 

 
1 

1 

1 

 8.4755                 

 3.1516  

 2.3649 

0.01955 * 

0.11377 

0.16265 

 

Appendix table 39: Test results from a Tukey HSD post-hoc test. See Appendix table 1 for additional info. 

Comparison   Diff     Lwr   Upr p-value 

PL fall – Cage fall -0.5814569          -1.1733312      0.01041731       0.0513 

Cage Spring – Cage fall 

PL Spring – Cage fall 

Cage Spring – PL Fall 

PL Spring – PL fall 

PL Spring – Cage Spring 

-0.4329937  

-0.6124912 

0.14846323 

-0.0310342  

-0.1794975                 

-1.0248680 

-1.2043655  

-0.4434110 

-0.6229085  

-0.7713718                   

0.15888054  

-0.0206169 

0.74033749 

0.56083997  

0.41237675                      

0.1670 

0.0427 * 

0.8511 

0.9981 

0.7690 

 

 FCR (Feed conversion ratio)  

Appendix table 40: Test results from a two-way ANOVA lm-model. See Appendix table 1 for additional info.   
DF F-value p-value 

System 

Season 

System: Season 

 
1 

1 

1 

0.0718 

0.7750 

0.1927 

0.7955 

0.4043 

0.6723 

 

Appendix table 41: Test results from a Tukey HSD post-hoc test. See Appendix table 1 for additional info. 

Comparison   Diff     Lwr   Upr p-value 

PL fall – Cage fall 0.00684659 -0.1745369      0.1882301       0.9993 

Cage Spring – Cage fall 

PL Spring – Cage fall 

Cage Spring – PL Fall 

PL Spring – PL fall 

PL Spring – Cage Spring 

-0.0176781 

-0.0459938 

-0.0245247 

-0.0528404 

-0.0283156 

-0.1990617  

-0.2273773 

-0.2059083  

-0.2342239  

-0.2096992                       

0.1637054 

0.1353897 

0.1568588  

0.1285431 

0.1530679                         

0.9886 

0.8472 

0.9710 

0.7888 

0.9568 
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Mortality   

Appendix table 42: Test results from a two-way ANOVA lm-model. See Appendix table 1 for additional info.   
DF F-value p-value 

System 

Season 

System: Season 

 
1 

1 

1 

0.5102 

0.4032 

0.0004 

0.4982 

0.5457 

0.9849 

 

Appendix table 43: Test results from a Tukey HSD post-hoc test. See Appendix table 1 for additional info. 

Comparison   Diff     Lwr   Upr p-value 

PL fall – Cage fall 3.3000000        -6.095182          12.695182             0.6856 

Cage Spring – Cage fall 

PL Spring – Cage fall 

Cage Spring – PL Fall 

PL Spring – PL fall 

PL Spring – Cage Spring 

-0.5400000  

-1.1233333 

-3.8400000  

-4.4233333  

-0.5833333                           

-9.935182  

-10.518515  

-13.235182  

-13.818515 

-9.978515                                    

8.855182 

8.271849 

5.555182  

4.971849    

8.811849                             

0.9975 

0.9795 

0.5828 

0.4760 

0.9969 

 

Final weight (w2)   

Appendix table 44: Test results from a two-way ANOVA lm-model. See Appendix table 1 for additional info.   
DF F-value p-value 

System 

Season 

System: Season 

 
1 

1 

1 

0.1048 

1.6163 

0.6937 

0.7545 

0.2393 

0.4291 

 

Appendix table 45: Test results from a Tukey HSD post-hoc test. See Appendix table 1 for additional info. 

Comparison   Diff     Lwr   Upr p-value 

PL fall – Cage fall 48.73333         -384.7293        482.1960             0.9828 

Cage Spring – Cage fall 

PL Spring – Cage fall 

Cage Spring – PL Fall 

PL Spring – PL fall 

PL Spring – Cage Spring 

201.4000 

90.70000 

152.6666 

41.96667  

-110.700                             

-232.0626 

-342.7626 

-280.7960 

-391.4960   

-544.1626                                               

634.8626 

524.1626  

586.1293 

475.4293   

322.7626                                    

0.4863 

0.9054 

0.6839 

0.9888 

0.8445 
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Statistical Results Phase 2 – Grow-out  

 Gain (w2-w1)  

Appendix table 46: Test results from a two-way ANOVA lm-model. See Appendix table 1 for additional info.   
DF F-value p-value 

System (PL and Sea cage) 

Season (Spring and fall) 

System: Season  

 
1 

1 

1 

7.0667 

0.0414 

0.1068  

0.0288 * 

0.8437 

0.7522 

 

Appendix table 47: Test results from a Tukey HSD post-hoc test. See Appendix table 1 for additional info. 

Comparison   Diff     Lwr    Upr p-value 

PL fall – Cage fall 957.63333   -495.2221 2410.4888 0.2284 

Cage Spring – Cage fall 

PL Spring – Cage fall 

Cage Spring – PL Fall 

PL Spring – PL fall 

PL Spring – Cage Spring 

39.53333 

787.50000  

-918.10000 

-170.13333 

747.96667      

-1413.3221 

-665.3555 

-2370.9555 

-1622.9888  

-704.8888    

1492.3888 

2240.3555 

534.7555 

1282.7221 

2200.8221 

0.9997 

0.3671 

0.2560 

0.9807 

0.4066 

 

SGR (Specific growth rate) 

Appendix table 48: Test results from a two-way ANOVA lm-model. See Appendix table 1 for additional info.   
DF F-value p-value 

System (PL and Sea cage) 

Season (Spring and fall) 

System: Season  

 
1 

1 

1 

1.6391 

2.9509 

0.2181 

0.2363 

0.1242 

0.6530 

 

Appendix table 49: Test results from a Tukey HSD post-hoc test. See Appendix table 1 for additional info. 

Comparison     Diff      Lwr      Upr p-value 

PL fall – Cage fall 0.10985929 -0.1748899 0.3946085 0.6237 

Cage Spring – Cage fall 

PL Spring – Cage fall 

Cage Spring – PL Fall 

PL Spring – PL fall 

PL Spring – Cage Spring 

0.13736922  

0.18850568 

0.02750993 

0.07864639 

0.05113646 

-0.1473799 

-0.0962435 

-0.2572392 

-0.2061028 

-0.2336127 

0.4221184 

0.4732549 

0.3122591 

0.3633956 

0.3358857 

0.4571 

0.2256 

0.9889 

0.8130 

0.9368 

 

 TGC (Thermal growth coefficient)   

Appendix table 50: Test results from a two-way ANOVA lm-model. See Appendix table 1 for additional info.   
DF F-value p-value 

System (PL and Sea cage) 

Season (Spring and fall) 

System: Season  

 
1 

1 

1 

2.7826 

0.5005 

0.7109 

0.1338 

0.4994 

0.4236 

 

Appendix table 51: Test results from a Tukey HSD post-hoc test. See Appendix table 1 for additional info. 

Comparison     Diff      Lwr      Upr p-value 

PL fall – Cage fall 0.5660641 -0.4547707 1.5868988 0.3498 

Cage Spring – Cage fall 

PL Spring – Cage fall 

Cage Spring – PL Fall 

PL Spring – PL fall 

PL Spring – Cage Spring 

0.0305819 

0.2165376 

-0.5354822 

-0.3495265 

0.1859557 

-0.9902529 

-0.8042972 

-1.5563169 

-1.3703613 

-0.8348791 

1.0514167 

1.2373723 

0.4853526 

0.6713083 

1.2067904 

0.9996 

0.9021 

0.3922 

0.7014 

0.9343 
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 Sea Lice infestations   

Appendix table 52: Test results from a two-way ANOVA lm-model. See Appendix table 1 for additional info.   
DF F-value p-value 

System (PL and Sea cage) 

Season (Spring and fall) 

System: Season  

 
1 

1 

1 

1.3240 

1.3537 

0.0556 

0.2831 

0.2782 

0.8195 

 

Appendix table 53: Test results from a Tukey HSD post-hoc test. See Appendix table 1 for additional info. 

Comparison     Diff      Lwr      Upr p-value 

PL fall – Cage fall -0.3696496 -1.577106 0.8378062 0.7642 

Cage Spring – Cage fall 

PL Spring – Cage fall 

Cage Spring – PL Fall 

PL Spring – PL fall 

PL Spring – Cage Spring 

-0.3730688 

-0.6169814 

-0.0034191 

-0.2473317 

-0.2439125 

-1.580525 

-1.824437 

-1.210875 

-1.454788 

-1.451368 

0.8343871 

0.5904745 

1.2040367 

0.9601242 

0.9635433 

0.7594 

0.4125 

0.9999 

0.9105 

0.9137 

 

 Feed conversion ratio (FCR)  

Appendix table 54: Test results from a two-way ANOVA lm-model. See Appendix table 1 for additional info.   
DF F-value p-value 

System (PL and Sea cage) 

Season (Spring and fall) 

System: Season  

 
1 

1 

1 

2.5792 

14.4636 

4.4741 

0.1469 

0.0052 ** 

0.0673 

 

Appendix table 55: Test results from a Tukey HSD post-hoc test. See Appendix table 1 for additional info. 

Comparison     Diff      Lwr      Upr p-value 

PL fall – Cage fall -0.1793056 -0.3975257    0.038914 0.1118 

Cage Spring – Cage fall 

PL Spring – Cage fall 

Cage Spring – PL Fall 

PL Spring – PL fall 

PL Spring – Cage Spring 

-0.2851734 

-0.2606368 

-0.1058678 

-0.0813312 

0.0245366 

-0.5033935 

-0.4788569 

-0.3240879   

-0.2995513   

-0.1936835   

-0.066953 

-0.042416 

0.1123523 

0.1368889 

0.2427567 

0.0130 * 

0.0210 * 

0.4528 

0.6471 

0.9828 

 

 Mortality  

Appendix table 56: Test results from a two-way ANOVA lm-model. See Appendix table 1 for additional info.   
DF F-value p-value 

System (PL and Sea cage) 

Season (Spring and fall) 

System: Season  

 
1 

1 

1 

2.3425 

1.2886 

8.7834 

0.1642 

0.2891 

0.0180 *  

 

Appendix table 57: Test results from a Tukey HSD post-hoc test. See Appendix table 1 for additional info. 

Comparison     Diff      Lwr      Upr p-value 

PL fall – Cage fall -18.073333 -36.28581   0.1391442 0.0517 

Cage Spring – Cage fall 

PL Spring – Cage fall 

Cage Spring – PL Fall  

PL Spring – PL fall 

PL Spring – Cage Spring 

-16.483333 

-16.483333 

   1.590000 

   7.353333 

   5.763333 

-34.69581  

-28.93248  

-16.62248  

-10.85914  

-12.44914    

1.7291442 

7.4924775 

19.8024775 

25.5658108 

23.9758108 

0.0767 

0.3057 

0.9917 

0.5916 

0.7466 
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Final weight (w2)  

Appendix table 58: Test results from a two-way ANOVA lm-model. See Appendix table 1 for additional info.   
DF F-value p-value 

System (PL - Sea cage) 

Season (Spring - fall) 

System: Season  

 
1 

1 

1 

6.6626 

0.3774 

0.0053 

0.02530 *  

0.55608 

0.94382 

 

Appendix table 59: Test results from a Tukey HSD post-hoc test. See Appendix table 1 for additional info. 

Comparison     Diff      Lwr      Upr p-value 

PL fall – Cage fall    841.3667   -594.3984 2277.1317 0.3089 

Cage Spring – Cage fall 

PL Spring – Cage fall 

Cage Spring – PL Fall  

PL Spring – PL fall 

PL Spring – Cage Spring 

  -171.7000 

   623.5667   

-1013.0667 

  -217.8000 

   795.2667   

-1607.4650 

-812.1984 

-2448.8317 

-1653.5650  

-640.4984    

1264.0650 

2059.3317 

422.6984 

1217.9650 

2231.0317 

0.9795 

0.5378 

0.1871 

0.9601 

0.3507 

 

Stocking density in Preline and Sea cages (chapter 2) 

Appendix table 60: Stocking density at the start and end of experimental period in Preline and reference group 

during phase 1 (100 to 284-844 g)-. Rearing volume: Preline 2000 m3 and sea cage (spissnot) 27,000 m3.  

Phase 1     

Generation Preline initial Preline final Reference initial Reference final 

              Kg/m3 

1 9.8 

 

42.0 

 

0.8 

 

4.5 

 

2 7.8 

 

55.6 

 

0.7 

 

3.9 

 

3 8.8 

 

37.7 

 

0.6 

 

5.0 

 

4 5.1 

 

20.7 

 

0.7 

 

2.1 

 

5 14.5 

 

59.8 

 

0.8 

 

2.2 

 

6 15.9 

 

35.8 

 

0.7 

 

2.4 

 

Appendix table 61: Stocking density at the start and end of experimental period in Preline and reference group 

during phase 2 (285 to 3,360-5,700 g). Rearing volume: Preline 2000 m3 and sea cage 27,000 m3.  

Phase 2     

Generation Preline initial Preline final Reference initial Reference final 

               Kg/m3 

1 3.12 

 

21.8 

 

4.6 

 

24.3 

 

2 4 

 

23.4 

 

3.9 

 

22.1 

 

3 2.8 

 

23.8 5.1 

 

18.8 

 

4 1.5 

 

13.6 

 

2.1 

 

22.4 

 

5 4.4 

 

43.9 

 

2.2 

 

13.5 

 

6 1.5 

 

20.6 

 

1.9 

 

19.8 
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Appendix IV– Economic Analysis: Implementation of semi-closed containment system 

(S-CCS) in a conventional production regime for Atlantic salmon in Norway. 

Background  

 To reduce the challenges highlighted in the introduction, the industry demands new 

technology. Implementation of Preline closed containment system (S-CCS) is suggested as a 

new strategy in abating the challenges and farmers are now considering these capital-intensive 

technology alternatives to realize increased production.  

This appendix will analyse implementation of S-CCS system for post-smolt production 

in a conventional production regime for Atlantic salmon in Norway.     

Objective:  

The aim of this analysis is to benchmark the investment cost of a new technology (S-

CCS) regime implemented into a conventional production regime for Atlantic salmon and 

compare it to a traditional sea cage strategy.    

The economic model includes two strategies. First; Conventional rearing of small smolt 

in traditional conventional sea-cage strategy until harvest (Appendix Figure 11A).   

Second; Rearing post-smolt in S-CCS prior to grow-out phase in sea cage until harvest 

(Appendix Figure 11B). 

 

Appendix figure 11. Overview over the two production strategies. These are equivalent to the strategy 

performed in chapter 2 (Note. The stocking period in the S-CCS was (>6 months) for the post-smolt in 

chapter 2).  

A 

B 
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Investments scenarios  

Scenario 1: Spring estimations  

A: Sea cage strategy: 12-month production, based on spring estimations   

B: S-CCS + Sea cage strategy: 6 months (post-smolt) in S-CCS and 6 months in Sea 

cage, based on spring estimations 

Scenario 2: Fall estimations  

A: Sea cage strategy: 12-month production, based on fall estimations   

B: S-CCS + Sea cage strategy: 6 months (post-smolt) in S-CCS and 6 months in Sea 

cage, based on fall estimations 

 

Assumptions 

The empirical data is part of a full-scale industrial production cycle. Stocking density, 

placement of locations, number of fish, initial weight and more factors varied among the 

generations. In consequence, some corrections and assumptions were implemented in the 

economic model.  

Assumptions for the economic model:  

 

• Initial number of fish in all scenarios are 200,000 individuals due to MTB (780 tons) 

restrictions, and for a comparable estimation between the groups. 

• Initial weight of the post-smolt is set equal (115 g) in both phases for all comparisons. 

• The mortality and final weight per fish is estimated from the performances in six 

generations of stocking, mean values (n = 3) from spring and fall stockings (Appendix 

table 61). 

• To determine the feed cost of fish that dies during the stocking period, the fish size is 

fixed at 2 kg. 

• Investment in the S-CCS also included a 100% investment in a conventional sea-based 

construction to fulfil a full production regime for Atlantic salmon production. 

• Initial investment of conventional Sea-cage: 50. million NOK (1 MTB) 

• Initial investment of S-CCS system: 35.8 million NOK   

• In S-CCS phase the cost of lice-treatment is 0 NOK/kg.  

• Operating period for the model is 12 months. (in field, the average period for the 

stockings was 13.2 months for the experiment). 
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• Feed cost (NOK/kg), smolt price (NOK/kg), salary (per hour), consultant fee (per hour) 

are equal in both systems.  

• In the Sea cage phase the fish is stocked at the same location the whole period from 

stocking to harvest size.  

• The fallowing time (“brakkleggingstid” in Norwegian) for the S-CCS: two weeks. 

• The license fee for operating with Atlantic salmon in sea (“konsesjonskostnad” in 

Norwegian) are not included in this analysis.    

• Discount rate is 10% for both production systems.   

• For NPV and IRR calculations depreciation period is 10 year and corporation tax are 

not included.  

• The depreciation cost and interest cost for all the systems are fixed at 1 year in both 

scenarios (12 months). 

•  Maintenance cost, 10% of depreciation applies for 1 year in both scenarios (12 months) 

Note: In scenario 1 and 2, the depreciation calculations and maintenance cost presented for 

the S-CCS strategy (1B and 2B) are for 6 months production in each system, but in the analysis 

the systems are depreciated for 12 months. This applies to the depreciation cost and 

maintenance cost in appendix table 63,64,68 and 69, and explains the difference in Cost, NOK 

in the appendix table 65 and 70.         

 

Estimated input data in the economic model   

 

The economic model is based on empirical biological data from the fall and spring 

generations studied in chapter 2, as depicted in Appendix table 61.   

 

Appendix table 61. Estimation of biomass for spring and fall stockings. Preline group and 

reference group open net-pens (final weight and mortality).  

Estimations Season Fish stock N Mortality % Initial weight Estimated Final 

weight 

per fish (kg) 

Estimated 

Biomass in the 

system (kg) 

Preline Spring 200,000 14.4  0.115 4.654  796,764 

Open net Spring 200,000 8.64  0.115 3.797  693,787  

Preline  Fall 200,000 7.05  0.115 4.872  905,704  

Open net Fall 200,000 25.12  0.115 4.030  603,532  
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The formula of the Net Present Value (NPV) is used to calculate the present value of an 

investment by the discounted sum of all cash flows from the project. To determine the NPV the 

investment cost, cash flow, lifetime, and discount rate is required.  

The Net Present Value (NPV):  

 

𝑁𝑃𝑉 =  −𝐶0 +  ∑
𝐶𝑖

(1 + 𝑟)𝑖

𝑇

𝑖=0

 

 

−C0 = Initial Investment 

C = Cash Flow 

r = Discount Rate 

T = Time period (10 years) 

 

 

The internal rate of return (IRR) is used in capital budgeting in order to estimate the 

profitability of potential investment. The internal rate of return is a discount rate that makes the 

net present value (NPV) of all cash flow from a project equal to zero.   

 

Internal Rate of Return (IRR) – discount rate r which makes NPV = 0; 

 

𝐼𝑅𝑅 =  
(𝐶𝑎𝑠ℎ 𝑓𝑙𝑜𝑤𝑠)

(1 + 𝑟)𝑇
 −  𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑖𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡 =  0 

 

Cash flows = Cash flows in the time period 

r = Discount rate 

T = Time period (10 years) 

 

 

 

 

 

 



 

 

137 
 

Scenario 1A – Sea cage strategy 12 months (spring) 

Appendix table 62. Overview of production related cost in the 12-month sea cage strategy 

(Spring). 

Expense item Unit Cost  

Time of production, months 12   

Smolt cost, NOK/per item NOK 20.00 NOK 4 000 000.00 

Smolt weight, kg                     21 211    

Feed cost, NOK/kg NOK 12.00 NOK 10 241 650.64 

Lice cost, NOK/kg NOK 5.00 NOK 3 363 875.20 

Personnel cost, number of employees 4   

Salary per employee, incl. fees NOK NOK 900 000.00   

Cost salary per production, NOK   NOK 3 600 000.00 

Investment, complete facility NOK 50 000 000.00   

Depreciation, % per year 10   

Depreciation cost   NOK 5 000 000.00 

Interests cost, NOK 3 NOK 1 500 000.00 

      

Maintenance cost, % depreciation 10 NOK 500 000.00 

Hiring of equipment/personnel, hours 400   

Hourly cost, hiring NOK 2 500.00   

Hiring cost   NOK 1 000 000.00 

Energy cost per month NOK 10 000.00   

Energy cost total   NOK 120 000.00 

      

Total   NOK 29 325 525.84 

 

Appendix table 63. Estimated production cost NOK/kg Sea cage 12 months (spring). 

Estimated production cost  

  
Number of fish in                   200 000  

Number of fish out                   182 720  

Weight in, kg                         0.115  

Weight out, kg 3.797 

Produced biomass, round kg                   693 788  

Processed weight, kg (gutted fish)                   575 844  

Cost, NOK NOK 29 325 525.84 

  
Selling price, NOK/kg NOK 60.00 

  
Sales value total, NOK NOK 34 550 634.43 

Prod cost, NOK/kg NOK 42.27 

  
Profit, NOK NOK 5 225 108.60 
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Scenario 1B – Preline S-CCS strategy and open sea cage (spring) 

Appendix table 63. Overview of production related cost 6-month in Preline S-CCS (Spring). 

Expense item                            Unit           6 months 

Time of production, months 6   

Smolt cost, NOK/per item NOK 20.00 NOK 4 000 000.00 

Smolt weight (spring and fall), kg                        22 885   
Fees cost, NOK/kg NOK 12.00 NOK 1 040 986.56 

Lice cost, NOK/kg NOK 0.00 NOK 0.00 

Personnel cost, number of employees 2   

Salary per employee, incl fees NOK NOK 900 000.00   

Cost salary per production, NOK   NOK 900 000.00 

Investment, S-CCS NOK 35 800 000.00   

Depreciation, % per year-month 10   

Depreciation cost   NOK 1 790 000.00 

Interest cost, NOK 3 NOK 1 074 000.00 

      

Maintenance cost, % depreciation 10 NOK 179 000.00 

Hiring of equipment/personnel, hours 180   

Hourly cost, hiring NOK 2 500.00   

Hiring cost   NOK 450 000.00 

Energy cost per month NOK 30 000.00   

Energy cost total   NOK 180 000.00 

      

Total   NOK 9 613 986.56 

 

Appendix table 64. Overview of production related cost 6-month in Sea cage (Spring). 

Expense item                         Unit                         6 months 

Time of production, months 6   

Feed cost, NOK/kg NOK 12.00 NOK 10 434 413.75 

Lice cost, NOK/kg NOK 5.00 NOK 3 569 340.71 

Personnel cost, number of employees 4   

Salary per employee, incl. fees NOK NOK 900 000.00   

Cost salary per production, NOK   NOK 1 800 000.00 

Investment, complete facility NOK 50 000 000.00   

Depreciation, % per year-month 10   

Depreciation cost   NOK 2 500 000.00 

Interest cost, NOK 3 NOK 1 500 000.00 

      

Maintenance cost, % depreciation 10 NOK 250 000.00 

Hiring of equipment/personnel, hours 200   

Hourly cost, hiring NOK 2 500.00   

Hiring cost   NOK 500 000.00 

Energy cost per month NOK 10 000.00   

Energy cost total   NOK 60 000.00 

      

Total   NOK 20 613 754.46 
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Appendix table 65. Summary of scenario 1 output – profit in both strategies marked in green. 

Total Sea cage per 12 months S-CCS – Sea cage per 12 months 

Number of fish produced per year 182 720 171 191 

Produced biomass, round kg 693 788 796 725 

Processed weight, kg (gutted fish) 575 844 661 282 

      

Cost, NOK NOK 29 325 525.84 NOK 37 520 982.30* 

*Prod cost, NOK/kg NOK 42.27 NOK 47.09 

Selling price, gutted, NOK/kg 60 60 

Sales value total, NOK NOK 34 550 634.43  39 676 894.04 

      

Profit, NOK  5 225 108.60 2 155 911.74 

*Includes total depreciation and maintenance cost for 12 months.  

 

Scenario 2A – Sea cage strategy (fall) 

Appendix table 66: Overview of production related cost in the 12-month Sea Cage strategy (Fall). 

Expense item Unit   Cost 

Time of production, months 12   

Smolt cost, NOK/per unit NOK 20.00 NOK 4 000 000.00 

Smolt weight, kg                     17 222    

Feed cost, NOK/kg NOK 12.00 NOK 9 158 821.06 

Lice cost, NOK/kg NOK 5.00 NOK 2 931 552.00 

Personnel cost, number of employees 4   

Salary per employee, incl. fees  NOK 900 000.00   

Cost salary per production, NOK   NOK 3 600 000.00 

Investment, complete facility (Sea cage) NOK 50 000 000.00   

Depreciation, % per year 10   

Depreciation cost   NOK 5 000 000.00 

Interest cost, NOK 3 NOK 1 500 000.00 

      

Maintenance cost, % depreciation 10 NOK 500 000.00 

Hiring of equipment/personnel, hours 400   

Hourly cost, hiring NOK 2 500.00   

Hiring cost   NOK 1 000 000.00 

Energy cost per month NOK 10 000.00   

Energy cost total   NOK 120 000.00 

      

Total   NOK 27 810 373.06 
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Appendix table 67: Estimated production cost NOK/kg in sea cage. 

Estimated production cost               

    

Number of fish in                    200 000  

Number of fish out                   149 760  

Weight in, kg                         0.115  

Weight out, kg 4.03 

Produced biomass, round/whole kg                   603 533  

Processed weight, kg (gutted fish)                   500 932  

Cost, NOK NOK 27 810 373.06 

    

Selling price, NOK/kg NOK 60.00 

    

Sales value total, NOK NOK 30 055 933.44 

Prod cost, NOK/kg NOK 46.08 

    

Profit, NOK NOK 2 245 560.38 

 

Scenario 2B - Preline S-CCS and open sea cage strategy (fall) 

Appendix table 68: Overview of production related cost 6-month in Preline S-CCS.  

Expense item                          Unit       6 months 

Time of production, months 6   

Smolt cost, NOK/per item NOK 20.00 NOK 4 000 000.00 

Smolt weight (spring and fall), kg                        22 770    

Feed cost, NOK/kg NOK 12.00 NOK 1 171 541.76 

Lice cost, NOK/kg NOK 0.00 NOK 0.00 

Personnel cost, number of 

employees 2   

Salary per employee, incl. fees NOK NOK 900 000.00   

Cost salary per production NOK    NOK 900 000.00 

Investment, S-CCS NOK 35 800 000.00   

Depreciation, % per year-month 10   

Depreciation cost   NOK 1 790 000.00 

Interest cost, NOK 3 NOK 1 074 000.00 

      

Maintenance cost, % depreciation 10 NOK 179 000.00 

Hiring of equipment/personnel, 

hours 180   

Hourly cost, hiring NOK 2 500.00   

Hiring cost   NOK 450 000.00 

Energy cost per month NOK 30 000.00   

Energy cost total   NOK 180 000.00 

      

Total   NOK 9 744 541.76 
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Appendix table 69: Overview of production related cost 6-month in Sea cage (Fall). 

Expense item                     Unit                 6 months 

Time of production, months 6   

Smolt cost, NOK/per item   NOK 0.00 

Smolt weight (spring and fall), kg     

Feed cost, NOK/kg NOK 12.00 NOK 11 737 909.69 

Lice cost, NOK/kg NOK 5.00 NOK 4 014 985.59 

Personnel cost, number of employees 4   

Salary per employee, incl. fees NOK NOK 900 000.00   

Cost salary per production, NOK    NOK 1 800 000.00 

Investment, complete facility NOK 50 000 000.00   

Depreciation, % per year-month 10   

Depreciation cost   NOK 2 500 000.00 

Interests cost, NOK 3 NOK 1 500 000.00 

      

Maintenance cost, % depreciation 10 NOK 250 000.00 

Hiring of equipment/personnel, hours 200   

Hourly cost, hiring NOK 2 500.00   

Hiring cost   NOK 500 000.00 

Energy cost per month NOK 10 000.00   

Energy cost total   NOK 60 000.00 

      

Total   NOK 22 362 895.28 

 

Appendix table 70: Summary of scenario2 output – profit in both strategies marked in green. 

Total Sea cage per 12 months 

S-CCS – Sea cage per 12 

months 

Number of fish produced per year 149 760 185 922 

Produced biomass, round kg 603 533 905 812 

Processed weight, kg (gutted fish) 500 932 751 824 

      

Cost, NOK NOK 27 810 373.06 NOK 39 400 437.04* 

Prod cost, NOK/kg NOK 46.08 NOK 43.50 

Selling price, gutted, NOK/kg 60 60 

Sales value total, NOK NOK 30 055 933.44 NOK 45 109 436.80 

      

Profit, NOK NOK 2 245 560.38 NOK 5 708 999.77 

*Includes total depreciation and maintenance cost for 12 months. 
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Summary of the two scenarios  

Appendix table 71. Production cost/kg, profit, NPV and IRR.  

     Scenarios Production cost/kg    Profit  NPV IRR 

1 A: Sea cage (Spring) 

1 B: S-CCS + Sea cage (Spring) 

2 A: Sea cage (Fall) 

2 B: S-CCS + Sea cage (Fall) 

42.27 kr 

47.09 kr 

46.08 kr 

43.50 kr 

5.225,108 

2.155,911 

2.245,560 

5.708,999 

22.189,422 

12.253,797 

3.737,680 

30.930,402 

19.56 % 

13.230 % 

11.713 % 

17.634 % 

 
 

Discussion  

According to the positive NPV values, all the scenarios in this case are profitable. The 

NPV measurement treats the projects equally, and The NPV results are independent of the 

investor`s risk preferences. The method gives an acceptable level of precision and is a widely 

used tool to predict the profit in investment projects. An assumption in the method is that there 

is an overall goal and vision to maximize the financial values of the interest groups (owners, 

investors, stakeholders, partners). 

The internal rate of return method (IRR) is another tool to analyse if a project is 

profitable. The IRR is rate of return that gives NPV = 0. The decision rule for the method is to 

accept those investment projects that have a capital cost less than the projects’ internal rate of 

return. In other words, if the cost of capital is less than the IRR, the net present value will be 

positive. The IRR gives a good indication of the profitability of projects in the same way as the 

NPV, subject to its proper use.         

Scenario 1 – Spring estimations    

 For the spring estimations, both strategies prove to be profitable. Here, the 12-month 

sea cage strategy is preferred by taking the NPV, IRR, Production cost/kg and profit into 

account. This is probably related to the 50% lower estimated mortality in the sea-cage strategy 

giving a 11% lower production cost/kg for sea-cage strategy in comparison to the S-CCS 



 

 

143 
 

strategy, despite the higher total gain (~12 % higher) achieved in the S-CCS strategy. Besides, 

in this scenario the S-CCS system is not used while the fish is transferred to open sea cages, 

giving a low NPV with this strategy and the optimal utilization is not achieved. Consequently, 

for the spring estimations, the Sea cage strategy is favoured, giving a profit over twice as high 

compared to the S-CCS strategy.    

 Scenario 2 – Fall estimations  

Both strategies suggest a profitable investment. In comparison between the systems, the 

NPV, IRR, Production cost/kg and profit values favour the S-CCS strategy based on the fall 

estimations. Considering the lower mortality and higher estimated biomass gain in the S-CCS 

strategy (~ 40% higher gain than sea cage strategy), this result was expected. The NPV values 

is almost ten times larger than the sea cage strategy and the estimated production cost per kg is 

6 % lower in the S-CCS strategy, giving a profit twice as high for the S-CCS strategy.      

In summary, all the scenarios in this analysis are profitable. In scenario 1 and 2, the S-

CCS system is not fully utilized as it only operates once per year for an equal comparison with 

the sea cage strategy. A strategy where the capital investment is only utilized for 6 months, is 

not a realistic scenario in an industry context, and from a farmer’s point of view a strategy 

maximizing the MTB (“Maksimalt tillatt biomasse” in Norwegian) is strived for.  

By implementing S-CCS in an optimal production line, it allows for an additional 

stocking every 6 months (within 1 production year), giving a total of two stockings per year in 

the S-CCS strategy to maximize the MTB. The optimization of this strategy was not evaluated 

in this analysis but are of interest for future research. Considering the findings summarized in 

chapter 1 and 2, implementation of S-CCS systems in conventional Atlantic salmon show a 

positive economic impact by achieving more biomass.  

Moreover, this analysis was based on estimated biological performance and various 

assumptions. Further analyses should investigate comparisons with land-based CCS, additional 
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cost regarding sea lice pressure, reduced mortality, feed cost, electricity cost, environmental 

impact, and other relevant production factors. The license fee for operating with salmon was 

not included in this analysis and is of great importance in future decisions for assessing new S-

CCS technology in Norwegian salmon aquaculture.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


